Skip to main content

Advertisement

Log in

Angiogenic factors: role in esophageal cancer, a brief review

  • Review Article
  • Published:
Esophagus Aims and scope Submit manuscript

Abstract

Esophageal cancer has an aggressive behavior with rapid tumor mass growth and frequently poor prognosis; it is known as one of the most fatal types of cancer worldwide. The identification of potential molecular markers that can predict the response to treatment and the prognosis of this cancer has been subject of a vast investigation in the recent years. Among several molecules, various angiogenic factors that are linked to the tumor development, growth, and invasion, such as VEGF, HGF, angiopoietin-2, IL-6, and TGF-B1, were investigated. In this paper, the authors sought to review the role of these angiogenic factors in prognosis and hypothesize how they can be used as a treatment target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pennathur A, Gibson MK, Jobe BA, et al. Oesophageal carcinoma. Lancet. 2013;381:400–12.

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, et al. Cancer statistics 2009. CA Cancer Clin. 2009;59:225–49.

    Article  Google Scholar 

  3. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  5. Guo Y, Xu F, Lu T, et al. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev. 2012;38:904–10.

    Article  CAS  PubMed  Google Scholar 

  6. Kishimoto T. Interleukin-6: from basic science to medicine 40 years in immunology. Annu Rev Immunol. 2005;23:1–21.

    Article  CAS  PubMed  Google Scholar 

  7. Oshima Y, Yajima S, Yamazaki K, et al. Angiogenesis-related factors are molecular targets for diagnosis and treatment of patients with esophageal carcinoma. Ann Thorac Cardiovasc Surg. 2010;16:389–93.

    PubMed  Google Scholar 

  8. Xu Z, Wang S, Wu M, et al. TGF beta1 and HGF protein secretion by esophageal squamous epithelial cells and stromal fibroblasts in oesophageal carcinogenesis. Oncol Lett. 2013;6:401–6.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sugiura K, Ozawa S, Kitagawa Y, et al. Co-expression of aFGF and FGFR-1 is predictive of a poor prognosis in patients with esophageal cancer. World J Gastroenterol. 2005;11:2188–92.

    Article  Google Scholar 

  10. Folkman J. How is blood vessel growth regulated in normal and neoplastic tissue? Cancer Res. 1986;11:467–73.

    Google Scholar 

  11. Leo C, Giaccia AJ, Denko NC. The hypoxic tumor microenvironment and gene expression. Semin Radiat Oncol. 2004;14:207–14.

    Article  PubMed  Google Scholar 

  12. Kimura S, Kitadai Y, Tanaka S, et al. Expression of hypoxia inducible factor (HIF)-1α is associated with vascular endothelial growth factor expression and tumour angiogenesis in human oesophageal squamous cell carcinoma. Eur J Cancer. 2004;40:1904–12.

    Article  CAS  PubMed  Google Scholar 

  13. Birchmeier C, Birchmeier W, Gherardi E, et al. Metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4:915–25.

    Article  CAS  PubMed  Google Scholar 

  14. Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science. 1991;251:802–4.

    Article  CAS  PubMed  Google Scholar 

  15. Ren Yi, Cao Brian, Law Simon, et al. Hepatocyte growth factor promotes cancer cell migration and angiogenic factors expression: a prognostic marker of human esophageal squamous cell carcinomas. Clin Cancer Res. 2005;3:6190–7.

    Article  Google Scholar 

  16. Saeki H, Oda S, Kawaguchi H, et al. Concurrent overexpression of Ets-1 and c-Met correlates with a phenotype of high cellular motility in human esophageal cancer. Int J Cancer. 2002;98:8–13.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou YZ, Fang XQ, Li H, et al. Role of serum angiopoietin-2 level in screening for esophageal squamous cell cancer and its precursors. Chin Med J (Engl). 2007;120:1216–9.

    CAS  Google Scholar 

  18. Dreikhausen L, Blank S, Sisic L, et al. Association of angiogenic factors with prognosis in esophageal cancer. BMC Cancer. 2015;15:121–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bromberg J. Stat proteins and oncogenesis. J Clin Invest. 2002;109:1139–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao Z-F, Li J-X, Ye Rui, et al. Interleukin-6 as a potential molecular target in esophageal squamous cell carcinoma. Oncol Lett. 2016;11:925–32.

    Article  CAS  PubMed  Google Scholar 

  21. Schindler C, Levy DE, Decker T. JAK-STAT signaling, from interferons to cytokines. J Biol Chem. 2007;282:20059–63.

    Article  CAS  PubMed  Google Scholar 

  22. Michiels C, Minet E, Mottet D, et al. Regulation of gene expression by oxygen: NF-kappaB and HIF-1, two extremes. Free Radic Biol Med. 2002;1:1231–42.

    Article  Google Scholar 

  23. Wang GL, Jiang BH, Rue EA, et al. Hypoxia inducible factor 1 is a basic helix-loop-helix–PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995;1:5510–4.

    Article  Google Scholar 

  24. Carmeliet P, Dor Y, Herbert JM, et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumor angiogenesis. Nature. 1998;394:485–90.

    Article  CAS  PubMed  Google Scholar 

  25. Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis. Semin Cancer Biol. 1999;9:211–20.

    Article  CAS  PubMed  Google Scholar 

  26. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677–84.

    Article  CAS  PubMed  Google Scholar 

  27. Dibbens JA, Miller DL, Damert A, et al. Hypoxic regulation of vascular endothelial growth factor mRNA stability requires the cooperation of multiple RNA elements. Mol Biol Cell. 1999;10:907–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ellis LM, Liu W, Fan F, et al. Role of angiogenesis inhibitors in cancer treatment. Oncology (Williston Park). 2001;15:39–46.

    CAS  Google Scholar 

  29. Amioka T, Kitadai Y, Tanaka S, et al. Vascular endothelial growth factor- C expression predicts lymph node metastasis of human gastric carcinoma invading the submucosa. Eur J Cancer. 2002;15:1413–9.

    Article  Google Scholar 

  30. Zhong H, De Marzo AM, Laughner E, et al. Over-expression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res. 1999;59:5830–5.

    CAS  PubMed  Google Scholar 

  31. Aebersold DM, Burri P, Beer KT, et al. Expression of hypoxia-inducible factor-1 alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res. 2001;12:2911–6.

    Google Scholar 

  32. Tzao C, Lee S-C, Tung H-J, et al. Expression of hypoxia-inducible factor (HIF)-1alpha and vascular endothelial growth factor (VEGF)-D as outcome predictors in resected esophageal squamous cell carcinoma. Dis Markers. 2008;25:141–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Olenyuk BZ, Zhang GJ, Klco JM, et al. Inhibition of vascular endothelial growth factor with a sequence-specific hypoxia response element antagonist. Proc Natl Acad Sci USA. 2004;101:16768–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tan C, de Noronha RG, Roecker AJ, et al. Identification of a novel small-molecule inhibitor of the hypoxia-inducible factor 1 pathway. Cancer Res. 2005;65:605–12.

    CAS  PubMed  Google Scholar 

  35. Sandler A. Bevacizumab in non-small cell lung cancer. Clin Cancer Res. 2007;355:4613–6.

    Article  Google Scholar 

  36. Samson P, Lockhart AC. Biologic therapy in esophageal and gastric malignancies: current therapies and future directions. J Gastrointest Oncol. 2017;8(3):418–29.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Massagué J. TGF-β signal transduction. Annu Rev Biochem. 1998;67:753–91.

    Article  PubMed  Google Scholar 

  38. Lahm H, Odartchenko N. Role of transforming growth factor β in colorectal cancer. Growth Factors. 1993;9:1–9.

    Article  CAS  PubMed  Google Scholar 

  39. S.-W I, Volpert OV, Bouck NP, et al. Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci USA. 2000;7:9624–9.

    Google Scholar 

  40. Shirai Y, Kawata S, Tamura S, et al. Plasma transforming growth factor-β 1 in patients with hepatocellular carcinoma comparison with chronic liver diseases. Cancer (Phila). 1994;73:2275–9.

    Article  CAS  Google Scholar 

  41. Junker U, Knoefel B, Nuske K, et al. Transforming growth factor-β 1 is significantly elevated in plasma of patients suffering from renal cell carcinoma. Cytokine. 1996;8:794–8.

    Article  CAS  PubMed  Google Scholar 

  42. Tsushima H, Kawata S, Tamura S, et al. High levels of transforming growth factor-β 1 in patients with colorectal cancer: association with disease progression. Gastroenterology. 1996;110:375–82.

    Article  CAS  PubMed  Google Scholar 

  43. Saito H, Tsujitani S, Oka S, et al. The expression of transforming growth factor-β1 is significantly correlated with the expression of vascular endothelial growth factor and poor prognosis of patients with advanced gastric carcinoma. Cancer (Phila). 1999;86:1455–62.

    Article  CAS  Google Scholar 

  44. Shariat SF, Kim JH, Andrews B, et al. Preoperative plasma levels of transforming growth factor-β 1 strongly predict clinical outcome in patients with bladder carcinoma. Cancer (Phila). 2001;92:2985–92.

    Article  CAS  Google Scholar 

  45. Narai S, Watanabe M, Hasegawa H, et al. Significance of transforming growth factor-β1 as a new tumor marker for colorectal cancer. Int J Cancer. 2002;97:508–11.

    Article  CAS  PubMed  Google Scholar 

  46. Natsugoe S, Xiangming C, Matsumoto M, et al. Smad4 and transforming growth factor-β1 expression in patients with squamous cell carcinoma of the esophagus. Clin Cancer Res. 2002;8:1838–42.

    CAS  PubMed  Google Scholar 

  47. Chevallier JM, Vitte E, Derosier C, et al. The thoracic esophagus: sectional anatomy and radiosurgical applications. Surg Radiol Anat. 1991;13:313–21.

    Article  CAS  PubMed  Google Scholar 

  48. Fukuchi M, Miyazaki T, Fukai Y, et al. Plasma level of transforming growth factor-β1 measured from the azygos vein predicts prognosis in patients with esophageal cancer. Clin Cancer Res. 2004;10:2738–41.

    Article  CAS  PubMed  Google Scholar 

  49. Nakamura T, Ozawa S, Kitagawa Y, et al. Expression of basic fibroblast growth factor is associated with a good outcome in patients with squamous cell carcinoma of the esophagus. Oncol Rep. 2005;14:617–23.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra F. Martins.

Ethics declarations

Ethical statement

This article does not contain any studies with human or animal subjects performed by any author(s).

Conflict of interest

The authors have no conflicts of interest and received no financial support for this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladeira, K., Macedo, F., Longatto-Filho, A. et al. Angiogenic factors: role in esophageal cancer, a brief review. Esophagus 15, 53–58 (2018). https://doi.org/10.1007/s10388-017-0597-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10388-017-0597-1

Keywords

Navigation