Skip to main content

Advertisement

Log in

Association between peripheral visual field defects and focal lamina cribrosa defects in highly myopic eyes

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

We aimed to identify peripheral visual field (VF) defect pathogenesis in high myopia using optical coherence tomography (OCT) and microperimetry and to investigate the association between focal lamina cribrosa defects (fLCDs) and high myopia-specific peripheral visual field defects (HM-pVFDs).

Study design

Retrospective case–control study.

Methods

Thirty-five highly myopic patients (refractive error ≥ 8.0 D or axial length > 26.5 mm) with an HM-pVFD, diagnosed using the V-4 isopter in Goldmann perimetry, and 35 age- and 35 sex-matched controls were studied. The optic nerve head (ONH) morphology was analyzed by use of OCT; retinal light sensitivities around the ONH were evaluated by use of microperimetry. The main outcome measures were best-corrected visual acuity (BCVA), axial length (AL), refractive error, intraocular pressure (IOP), the OCT findings, and the microperimetry findings.

Results

The BCVA, AL, IOP, and refractive error did not differ significantly between the patient and the control groups. Of the 35 eyes with an HM-pVFD, twenty-four had fLCDs detected by use of OCT, one showed no evidence of fLCDs, and ten had inadequate images due to excessive ONH tilting. Of the 35 control eyes, two had fLCDs, twenty-eight showed no evidence of fLCDs, and five had inadequate images. The peripapillary retinal light sensitivity was decreased in 29 of the 35 eyes with an HM-pVFD; no such decrease was noted in 30 of the 35 control eyes. Peripheral VF abnormality detection by use of microperimetry had 82.9% sensitivity and 85.7% specificity.

Conclusions

Our findings indicate an important relationship between HM-pVFDs and fLCDs, suggesting fLCD involvement in peripheral VF abnormality pathogenesis in highly myopic patients. Furthermore, microperimetry is reproducible for evaluating HM-pVFDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dolgin E. The myopia boom. Nature. 2015;519:276–8.

    Article  CAS  PubMed  Google Scholar 

  2. Yan YN, Wang YX, Yang Y, Xu L, Xu J, Wang Q, et al. Ten-year progression of myopic maculopathy: the Beijing Eye study 2001–2011. Ophthalmology. 2018;125:1253–63.

    Article  PubMed  Google Scholar 

  3. Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005;25:381–91.

    Article  PubMed  Google Scholar 

  4. Wong TY, Ohno-Matsui K, Leveziel N, Holz FG, Lai TY, Yu HG, et al. Myopic choroidal neovascularisation: current concepts and update on clinical management. Br J Ophthalmol. 2015;99:289–96.

    Article  PubMed  Google Scholar 

  5. Anderson DR, Drance SM, Schulzer M, Collaborative Normal-Tension Glaucoma Study Group. Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am J Ophthalmol. 2003;136:820–9.

    Article  PubMed  Google Scholar 

  6. Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol. 1983;95:673–91.

    Article  CAS  PubMed  Google Scholar 

  7. Ohno-Matsui K, Akiba M, Moriyama M, Shimada N, Ishibashi T, Tokoro T, et al. Acquired optic nerve and peripapillary pits in pathologic myopia. Ophthalmology. 2012;119:1685–92.

    Article  PubMed  Google Scholar 

  8. Faridi OS, Park SC, Kabadi R, Su D, De Moraes CG, Liebmann JM, et al. Effect of focal lamina cribrosa defect on glaucomatous visual field progression. Ophthalmology. 2014;121:1524–30.

    Article  PubMed  Google Scholar 

  9. Tatham AJ, Miki A, Weinreb RN, Zangwill LM, Medeiros FA. Defects of the lamina cribrosa in eyes with localized retinal nerve fiber layer loss. Ophthalmology. 2014;121:110–8.

    Article  PubMed  Google Scholar 

  10. Kimura Y, Akagi T, Hangai M, Takayama K, Hasegawa T, Suda K, et al. Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia. PLoS ONE. 2014;9:e115313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sawada Y, Araie M, Kasuga H, Ishikawa M, Iwata T, Murata K, et al. Focal lamina cribrosa defect in myopic eyes with nonprogressive glaucomatous visual field defect. Am J Ophthalmol. 2018;190:34–49.

    Article  PubMed  Google Scholar 

  12. Sawada Y, Araie M, Ishikawa M, Yoshitomi T. Multiple temporal lamina cribrosa defects in myopic eyes with glaucoma and their association with visual field defects. Ophthalmology. 2017;124:1600–11.

    Article  PubMed  Google Scholar 

  13. Tanaka N, Shinohara K, Yokoi T, Uramoto K, Takahashi H, Onishi Y, et al. Posterior staphylomas and scleral curvature in highly myopic children and adolescents investigated by ultra-widefield optical coherence tomography. PLoS ONE. 2019;14:e0218107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shinohara K, Shimada N, Moriyama M, Yoshida T, Jonas JB, Yoshimura N, et al. Posterior staphylomas in pathologic myopia imaged by widefield optical coherence tomography. Invest Ophthalmol Vis Sci. 2017;58:3750–8.

    Article  PubMed  Google Scholar 

  15. Ohno-Matsui K, Shimada N, Yasuzumi K, Hayashi K, Yoshida T, Kojima A, et al. Long-term development of significant visual field defects in highly myopic eyes. Am J Ophthalmol. 2011;152:256-65.e1.

    Article  PubMed  Google Scholar 

  16. Anderson DR, Patella VM. Automated static perimetry. 2nd ed. Maryland Heights: Mosby; 1999. p. 121–90.

    Google Scholar 

  17. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363:1711–20.

    Article  PubMed  Google Scholar 

  18. Spaide RF, Akiba M, Ohno-Matsui K. Evaluation of peripapillary intrachoroidal cavitation with swept source and enhanced depth imaging optical coherence tomography. Retina. 2012;32:103744.

    Article  Google Scholar 

  19. Kiumehr S, Park SC, Syril D, Teng CC, Tello C, Liebmann JM, et al. In vivo evaluation of focal lamina cribrosa defects in glaucoma. Arch Ophthalmol. 2012;130:552–9.

    Article  PubMed  Google Scholar 

  20. You JY, Park SC, Su D, Teng CC, Liebmann JM, Ritch R. Focal lamina cribrosa defects associated with glaucomatous rim thinning and acquired pits. JAMA Ophthalmol. 2013;131:314–20.

    Article  PubMed  Google Scholar 

  21. Garway-Heath DF, Caprioli J, Fitzke FW, Hitchings RA. Scaling the hill of vision: the physiological relationship between light sensitivity and ganglion cell numbers. Invest Ophthalmol Vis Sci. 2000;41:1774–82.

    CAS  PubMed  Google Scholar 

  22. Mitchell P, Hourihan F, Sandbach J, Wang JJ. The relationship between glaucoma and myopia: the Blue Mountains Eye Study. Ophthalmology. 1999;106:2010–5.

    Article  CAS  PubMed  Google Scholar 

  23. Aung T, Foster PJ, Seah SK, Chan SP, Lim WK, Wu HM, et al. Automated static perimetry: the influence of myopia and its method of correction. Ophthalmology. 2001;108:290–5.

    Article  CAS  PubMed  Google Scholar 

  24. Yoshida M, Okada E, Mizuki N, Kokaze A, Sekine Y, Onari K, et al. Age-specific prevalence of open-angle glaucoma and its relationship to refraction among more than 60,000 asymptomatic Japanese subjects. J Clin Epidemiol. 2001;54:1151–8.

    Article  CAS  PubMed  Google Scholar 

  25. Daubs JG, Crick RP. Effect of refractive error on the risk of ocular hypertension and open angle glaucoma. Trans Ophthalmol Soc U K. 1981;101:121–6.

    CAS  PubMed  Google Scholar 

  26. Werner EB, Beraskow J. Peripheral nasal field defects in glaucoma. Ophthalmology. 1979;86:1875–8.

    Article  CAS  PubMed  Google Scholar 

  27. Jonas JB, Xu L. Histological changes of high axial myopia. Eye (Lond). 2014;28:113–7.

    Article  CAS  Google Scholar 

  28. Quigley HA. Open-angle glaucoma. N Engl J Med. 1993;328:1097–106.

    Article  CAS  PubMed  Google Scholar 

  29. Kwun Y, Han JC, Kee C. Comparison of lamina cribrosa thickness in normal tension glaucoma patients with unilateral visual field defect. Am J Ophthalmol. 2015;159:512-8.e1.

    Article  PubMed  Google Scholar 

  30. Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99:635–49.

    Article  CAS  PubMed  Google Scholar 

  31. Yan DB, Coloma FM, Metheetrairut A, Trope GE, Heathcote JG, Ethier CR. Deformation of the lamina cribrosa by elevated intraocular pressure. Br J Ophthalmol. 1994;78:643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bellezza AJ, Rintalan CJ, Thompson HW, Downs JC, Hart RT, Burgoyne CF. Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Invest Ophthalmol Vis Sci. 2003;44:623–37.

    Article  PubMed  Google Scholar 

  33. Han JC, Cho SH, Sohn DY, Kee C. The characteristics of lamina cribrosa defects in myopic eyes with and without open-angle glaucoma. Invest Ophthalmol Vis Sci. 2016;57:486–94.

    Article  CAS  PubMed  Google Scholar 

  34. Miki A, Ikuno Y, Asai T, Usui S, Nishida K. Defects of the lamina cribrosa in high myopia and glaucoma. PLoS ONE. 2015;10:e0137909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Spaide RF, Ohno-Matsui K, Yannuzzi LA. Pathologic myopia. New York: Springer; 2014. p. 167–76.

    Google Scholar 

  36. Curtin BJ. The posterior staphyloma of pathologic myopia. Trans Am Ophthalmol Soc. 1977;75:67–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Moriyama M, Ohno-Matsui K, Modegi T, Kondo J, Takahashi Y, Tomita M, et al. Quantitative analyses of high-resolution 3D MR images of highly myopic eyes to determine their shapes. Invest Ophthalmol Vis Sci. 2012;53:4510–8.

    Article  PubMed  Google Scholar 

  38. Oie Y, Ikuno Y, Fujikado T, Tano Y. Relation of posterior staphyloma in highly myopic eyes with macular hole and retinal detachment. Jpn J Ophthalmol. 2005;49:530–2.

    Article  PubMed  Google Scholar 

  39. Cohen SY, Quentel G. Chorioretinal folds as a consequence of inferior staphyloma associated with tilted disc syndrome. Graefes Arch Clin Exp Ophthalmol. 2006;244:1536–8.

    Article  PubMed  Google Scholar 

  40. Giocanti-Auregan A, Lavia C, Gaudric A, Grenet T, Cohen SY. Staphyloma-related chorioretinal folds. Am J Ophthalmol Case Rep. 2020;19:100747.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ohno-Matsui K, Akiba M, Modegi T, Tomita M, Ishibashi T, Tokoro T, et al. Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia. Invest Ophthalmol Vis Sci. 2012;53:6046–61.

    Article  PubMed  Google Scholar 

  42. Shinohara K, Moriyama M, Shimada N, Tanaka Y, Ohno-Matsui K. Myopic stretch lines: linear lesions in fundus of eyes with pathologic myopia that differ from lacquer cracks. Retina. 2014;34:461–9.

    Article  PubMed  Google Scholar 

  43. Radius RL, Anderson DR. The course of axons through the retina and optic nerve head. Arch Ophthalmol. 1979;97:1154–8.

    Article  CAS  PubMed  Google Scholar 

  44. Minckler DS. The organization of nerve fiber bundles in the primate optic nerve head. Arch Ophthalmol. 1980;98:1630–6.

    Article  CAS  PubMed  Google Scholar 

  45. Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet. 2017;390:2183–93.

    Article  PubMed  Google Scholar 

  46. Morgan WH, Yu DY, Balaratnasingam C. The role of cerebrospinal fluid pressure in glaucoma pathophysiology: the dark side of the optic disc. J Glaucoma. 2008;17:408–13.

    Article  PubMed  Google Scholar 

  47. Jonas JB, Wang YX, Dong L, Guo Y, Panda-Jonas S. Advances in myopia research anatomical findings in highly myopic eyes. Eye Vis (Lond). 2020;7:45.

    Article  Google Scholar 

  48. Downs JC, Girkin CA. Lamina cribrosa in glaucoma. Curr Opin Ophthalmol. 2017;28:113–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Park SC, Hsu AT, Su D, Simonson JL, Al-Jumayli M, Liu Y, et al. Factors associated with focal lamina cribrosa defects in glaucoma. Invest Ophthalmol Vis Sci. 2013;54:8401–7.

    Article  PubMed  Google Scholar 

  50. Palkovits S, Hirnschall N, Georgiev S, Leisser C, Findl O. Test–retest reproducibility of the microperimeter MP3 with fundus image tracking in healthy subjects and patients with macular disease. Transl Vis Sci Technol. 2018;7:17.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Matsuura M, Murata H, Fujino Y, Hirasawa K, Yanagisawa M, Asaoka R. Evaluating the usefulness of MP-3 microperimetry in glaucoma patients. Am J Ophthalmol. 2018;187:1–9.

    Article  PubMed  Google Scholar 

  52. Shinohara K, Moriyama M, Shimada N, Nagaoka N, Ishibashi T, Tokoro T, et al. Analyses of shape of eyes and structure of optic nerves in eyes with tilted disc syndrome by swept-source optical coherence tomography and three-dimensional magnetic resonance imaging. Eye (Lond). 2013;27:1233–41 (quiz 42).

    Article  CAS  Google Scholar 

  53. Akagi T, Hangai M, Kimura Y, Ikeda HO, Nonaka A, Matsumoto A, et al. Peripapillary scleral deformation and retinal nerve fiber damage in high myopia assessed with swept-source optical coherence tomography. Am J Ophthalmol. 2013;155:927–36.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (Grant no.: JP19K09987). The sponsor or funding organization had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Yoshida.

Ethics declarations

Conflicts of interest

S. Mochida, None; T. Yoshida, None; T. Nomura, None; R. Hatake, None; K. O. Matsui, None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Author: Takeshi Yoshida

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochida, S., Yoshida, T., Nomura, T. et al. Association between peripheral visual field defects and focal lamina cribrosa defects in highly myopic eyes. Jpn J Ophthalmol 66, 285–295 (2022). https://doi.org/10.1007/s10384-022-00909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-022-00909-0

Keywords

Navigation