Skip to main content
Log in

Influence of runoff on debris flow propagation at a catchment scale: a case study

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Debris flow mobility can vary during propagation due to changes in flow volume and bulk flow behavior resulting from the absorption of water from runoff. This study aims to investigate the effect of runoff on debris flow propagation by presenting an integrated model that considers the processes of rainfall, vegetation interception, soil infiltration, runoff generation, and debris flow propagation. Specifically, the study adopts an elevation-based empirical formula to evaluate the spatial distribution of rainfall and introduces a parameter for water absorption rate into the depth-averaged two-layer model that is used for describing the dynamics of runoff and debris flow. Through alternative simulations of the 2020 debris flow in the Meilong catchment, the study illustrates the significant effects of water absorption on debris flow propagation. The results indicate that as the water absorption rate of the debris mass increases, debris flow mobility also increases, since more mass and energy are transferred from runoff to debris flow. In addition, the spatial and temporal patterns of rainfall intensity can modify the propagation velocity of debris flow by influencing runoff dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data used in this work are either publicly available or available from the authors upon reasonable request.

References

  • An H, Ouyang CJ, Wang F et al (2022) Comprehensive analysis and numerical simulation of a large debris flow in the Meilong catchment. China Eng Geol 298

    Article  Google Scholar 

  • Aston AR (1979) Rainfall interception by eight small trees. J Hydrol 42(3–4):383–396

    Article  Google Scholar 

  • Audusse E, Bouchut F, Bristeau MO et al (2004) A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J Sci Comput 25(6):2050–2065

    Article  Google Scholar 

  • Bouchut F, Fernández-Nieto ED, Mangeney A et al (2016) A two-phase two-layer model for fluidized granular flows with dilatancy effects. J Fluid Mech 801:166–221

    Article  CAS  Google Scholar 

  • Bout B, Lombardo L, van Westen CJ et al (2018) Integration of two-phase solid fluid equations in a catchment model for flashfloods, debris flows and shallow slope failures. Environ Model Softw 105:1–16

    Article  Google Scholar 

  • Caviedes-Voullième D, García-Navarro P, Murillo J (2012) Influence of mesh structure on 2D full shallow water equations and SCS curve number simulation of rainfall/runoff events. J Hydrol 448:39–59

    Article  Google Scholar 

  • Chen SC, Peng SH (2006) Two-dimensional numerical model of two-layer shallow water equations for confluence simulation. Adv Water Resour 29(11):1608–1617

    Article  Google Scholar 

  • Church M, Jakob M (2020) What is a debris flood? Water Resour Res 56(8):e2020WR027144

  • Dahlquist MP, West AJ (2019) Initiation and runout of post-seismic debris flows: insights from the 2015 Gorkha earthquake. Geophys Res Lett 46(16):9658–9668

    Article  Google Scholar 

  • Das T, Bardossy ANDRÁS, Zehe E (2006) Influence of spatial variability of precipitation in a distributed rainfall-runoff model. IAHS Publ 303:195

    Google Scholar 

  • Fleming RW, Ellen SD, Algus MA (1989) Transformation of dilative and contractive landslide debris into debris flows—an example from Marin County. California Eng Geol 27(1–4):201–223

    Article  Google Scholar 

  • Fraccarollo L, Capart H (2002) Riemann wave description of erosional dam-break flows. J Fluid Mech 461:183

    Article  Google Scholar 

  • Frank F, Huggel C, McArdell BW et al (2019) Landslides and increased debris-flow activity: A systematic comparison of six catchments in Switzerland. Earth Surf Process Landf 44(3):699–712

    Article  Google Scholar 

  • Garcia-Martino AR, Warner GS, Scatena FN et al (1996) Rainfall, runoff and elevation relationships in the Luquillo Mountains of Puerto Rico. Carib J Sci 32:413–424

    Google Scholar 

  • George DL, Iverson RM (2014) A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470(2170):20130820

  • Guo XJ, Cui P, Chen XC et al (2021) Spatial uncertainty of rainfall and its impact on hydrological hazard forecasting in a small semiarid mountainous watershed. J Hydrol 595:126049

    Article  Google Scholar 

  • Haiden T, Pistotnik G (2009) Intensity-dependent parameterization of elevation effects in precipitation analysis. Adv Geosci 20:33–38

    Article  Google Scholar 

  • Han Z, Chen G, Li Y et al (2015) Numerical simulation of debris-flow behavior incorporating a dynamic method for estimating the entrainment. Eng Geol 190:52–64

    Article  Google Scholar 

  • Hu KH, Zhang XP, Luo H et al (2020) Investigation of the “6.17” debris flow chain at the Meilong catchment of Danba county, China. Mt Res 38(6):945–951 (In Chinese)

    Google Scholar 

  • Huang X, Tang C (2014) Formation and activation of catastrophic debris flows in Baishui River basin, Sichuan Province, China. Landslides 11:955–967

    Article  Google Scholar 

  • Iverson RM, Logan M, LaHusen RG et al (2010) The perfect debris flow? Aggregated results from 28 large‐scale experiments. J Geophys Res Earth Surf 115(F3)

  • Iverson RM, Ouyang CJ (2015) Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory. Rev Geophys 53(1):27–58

    Article  Google Scholar 

  • Iverson RM, Reid ME, LaHusen RG (1997) Debris-flow mobilization from landslides. Annu Rev Earth Planet Sci 25(1):85–138

    Article  CAS  Google Scholar 

  • Iverson RM, Reid ME, Logan M et al (2011) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat Geosci 4(2):116–121

    Article  CAS  Google Scholar 

  • Jiang ZX (1988) A discussion on the mathematical model of mountain precipitation with vertical distribution. Geogr Res 1:73–78

    Google Scholar 

  • Jiang N, Li HB, Hu YX et al (2022) Dynamic evolution mechanism and subsequent reactivated ancient landslide analyses of the “6.17” Danba sequential disasters. Bull Eng Geol Environ 81(4):149

    Article  Google Scholar 

  • Liang Q, Marche F (2009) Numerical resolution of well-balanced shallow water equations with complex source terms. Adv Water Resour 32(6):873–884

    Article  Google Scholar 

  • Liu W, He S (2016) A two-layer model for simulating landslide dam over mobile river beds. Landslides 13:565–576

    Article  Google Scholar 

  • Liu W, He S (2018) A two-layer model for the intrusion of two-phase debris flow into a river. Q J Eng GeolHydrogeol 51(1):113–123

    Article  Google Scholar 

  • Liu W, He S (2020) Comprehensive modelling of runoff-generated debris flow from formation to propagation in a catchment. Landslides 17(7):1529–1544

    Article  Google Scholar 

  • Liu W, He S, Li X (2015) Numerical simulation of landslide over erodible surface. Geoenvironmental Disasters 2(1):1–11

    Article  Google Scholar 

  • Luna BQ, Remaître A, Van Asch TW et al (2012) Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Eng Geol 128:63–75

    Article  Google Scholar 

  • McCoy SW, Kean JW, Coe JA et al (2012) Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment. J Geophys Res Earth Surf 117(F3)

  • Medina V, Hürlimann M, Bateman A (2008) Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides 5(1):127–142

    Article  Google Scholar 

  • Meyrat G, McArdell B, Ivanova K et al (2022) A dilatant, two-layer debris flow model validated by flow density measurements at the Swiss illgraben test site. Landslides 19(2):265–276

    Article  Google Scholar 

  • Minder JR, Roe GH, Montgomery DR (2009) Spatial patterns of rainfall and shallow landslide susceptibility. Water Resour Res 45(4)

  • Mohrig D, Marr JG (2003) Constraining the efficiency of turbidity current generation from submarine debris flows and slides using laboratory experiments. Mar Pet Geol 20(6–8):883–899

    Article  Google Scholar 

  • Norio O, Ye T, Kajitani Y et al (2011) The 2011 eastern Japan great earthquake disaster: overview and comments. International Journal of Disaster Risk Science 2:34–42

    Article  Google Scholar 

  • Pierson TC, Scott KM (1985) Downstream dilution of a lahar: transition from debris flow to hyperconcentrated streamflow. Water Resour Res 21(10):1511–1524

    Article  Google Scholar 

  • Prasad R (1988) A linear root water uptake model. J Hydrol 99(3–4):297–306

    Article  Google Scholar 

  • Pudasaini SP, Wang Y, Hutter K (2005) Modelling debris flows down general channels. Nat Hazard 5(6):799–819

    Article  Google Scholar 

  • Reid ME, Iverson RM, Logan M et al (2011) Entrainment of bed sediment by debris flows: results from large-scale experiments. Ital J Eng Geol Environ 367–374

  • Rengers FK, McGuire LA, Kean JW et al (2016) Model simulations of flood and debris flow timing in steep catchments after wildfire. Water Resour Res 52(8):6041–6061

    Article  Google Scholar 

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19:47–77

    Article  Google Scholar 

  • Rickenmann D, Scheidl C (2012) Debris-flow runout and deposition on the fan. In Dating torrential processes on fans and cones: methods and their application for hazard and risk assessment. Dordrecht: Springer Netherlands 75–93

  • Singh J, Altinakar MS, Ding Y (2015) Numerical modeling of rainfall-generated overland flow using nonlinear shallow-water equations. J Hydrol Eng 20(8):04014089

    Article  Google Scholar 

  • Song L, Chen M, Gao F et al (2019) Elevation influence on rainfall and a parameterization algorithm in the Beijing area. J Meteorol Res 33(6):1143–1156

    Article  CAS  Google Scholar 

  • Swartzendruber D (1987) A quasi-solution of Richards’ equation for the downward infiltration of water into soil. Water Resour Res 23(5):809–817

    Article  Google Scholar 

  • Talling PJ, Peakall J, Sparks RSJ et al (2002) Experimental constraints on shear mixing rates and processes: implications for the dilution of submarine debris flows. Geological Society, London, Special Publications 203(1):89–103

    Article  Google Scholar 

  • Tang C, Zhu J, Ding J et al (2011) Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake. Landslides 8:485–497

    Article  Google Scholar 

  • Tang C, Zhu J, Chang M et al (2012a) An empirical–statistical model for predicting debris-flow runout zones in the Wenchuan earthquake area. Quatern Int 250:63–73

    Article  Google Scholar 

  • Tang C, van Asch TW, Chang M et al (2012b) Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: the combined effects of a strong earthquake and subsequent rainstorms. Geomorphology 139:559–576

    Article  Google Scholar 

  • von Hoyningen-Hune J (1983) Die interzeption des niederschlags in landwirtschaftlichen pflanzenbeständen. Schriftenreihe des Deutschen Verbandes fuer Wasserwirtschaft und Kulturbau 57:1–53

    Google Scholar 

  • von Ruette J, Lehmann P, Or D (2014) Effects of rainfall spatial variability and intermittency on shallow landslide triggering patterns at a catchment scale. Water Resour Res 50(10):7780–7799

    Article  Google Scholar 

  • Wei R, Zeng Q, Davies T et al (2018) Geohazard cascade and mechanism of large debris flows in Tianmo gully, SE Tibetan Plateau and implications to hazard monitoring. Eng Geol 233:172–182

    Article  Google Scholar 

  • Yan Y, Cui Y, Liu D et al (2021) Seismic signal characteristics and interpretation of the 2020 “6.17” Danba landslide dam failure hazard chain process. Landslides 18:2175–2192

    Article  Google Scholar 

  • Yin M, Rui Y (2018) Laboratory study on submarine debris flow. Mar Georesour Geotechnol 36(8):950–958

    Article  Google Scholar 

  • Zhao B, Zhang H, Hongjian L et al (2021) Emergency response to the reactivated Aniangzhai landslide resulting from a rainstorm-triggered debris flow, Sichuan Province. China Landslides 18(3):1115–1130

    Article  Google Scholar 

  • Zhu H, Zhang LM, Garg A (2018) Investigating plant transpiration-induced soil suction affected by root morphology and root depth. Comput Geotech 103:26–31

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Yuankun Xu and another anonymous reviewer for their comments and valuable suggestions, which helped improve the manuscript’s quality.

Funding

This work was supported by the National Key R&D program of China (2023YFC3008300), the Original Innovation Program of the Chinese Academy of Sciences (ZDBS-LY-DQC039), the National Natural Science Foundation of China (42277179), the Science and Technology Research Program of Institute of Mountain Hazards and Environment, the Chinese Academy of Sciences (IMHEZYTS-04, IMHE-CXTD-02), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2021373).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siming He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Appendix. Derivation of the two-layer model by considering mass transfer at intermediate interface

Appendix. Derivation of the two-layer model by considering mass transfer at intermediate interface

Basic equations

The fundamental laws for mass and momentum conservations for an incompressible continuum are expressed as follows:

$$\left.\begin{array}{c}\partial_t\gamma_m+\nabla\cdot\left(\gamma_m{\mathbf U}_m\right)=0\\\partial_t\left(\gamma_m{\mathbf U}_m\right)+\nabla\cdot\left(\gamma_m{\mathbf U}_m\otimes{\mathbf U}_m\right)=-\nabla\cdot{\mathbf T}_m\end{array}\right\}$$
(13)

where Um = (u1,2, v1,2, w1,2) is the medium velocity field, in which the subscript m = (1, 2) refers to the upper layer and lower layer, respectively; γm is the medium density keeping constant; t is time; and Tm is the Cauchy stress tensor.

Boundary kinematic conditions

To express the boundary variation, such as the rates of boundary elevation change and the rates of material flux through each boundary, kinematic and dynamic boundary conditions are applied at the top and bottom boundary of any layer.

Kinematic boundary conditions imposed at the top and bottom interface of the upper layer are expressed as follows:

$${z}_{m}(x,t)={z}_{t}(x,t)-{h}_{1}=0$$
(14)
$$\left.\begin{array}{l}w_1(z_t)=\frac{\partial z_t}{\partial t}+u{}_1\left(z_t\right)\frac{\partial z_t}{\partial x}+v_1\left(z_t\right)\frac{\partial z_t}{\partial y}\\w_1(z_m)=\frac{\partial z_m}{\partial t}+u{}_1\left(z_m\right)\frac{\partial z_m}{\partial x}+v_1\left(z_m\right)\frac{\partial z_m}{\partial y}-E_m\end{array}\right\}$$
(15)

where Em is the mixture rate from runoff to debris flow as volumetric fluxes per unit boundary area normal to the bottom boundary zm.

Kinematic boundary conditions imposed at the top and bottom interface of the lower layer are expressed as follows:

$${z}_{b}(x,t)={z}_{t}(x,t)-{h}_{1}-{h}_{2}=0$$
(16)
$$\left.\begin{array}{c}{w}_{2}({z}_{\text{m}})=\frac{\partial {z}_{m}}{\partial t}+u{}_{2}\left({z}_{m}\right)\frac{\partial {z}_{m}}{\partial x}+{v}_{2}\left({z}_{m}\right)\frac{\partial {z}_{m}}{\partial y}-{E}_{m}\\ {w}_{2}({z}_{b})=\frac{\partial {z}_{b}}{\partial t}+u{}_{2}\left({z}_{b}\right)\frac{\partial {z}_{b}}{\partial x}+{v}_{2}\left({z}_{b}\right)\frac{\partial {z}_{b}}{\partial y}+{E}_{b}\end{array}\right\}$$
(17)

where Eb is entrainment rate of sediments as volumetric fluxes per unit boundary area normal to the bottom boundary.

The free surface of the two-layer is stress-free condition:

$${\mathbf T}_m\cdot\mathbf n=0$$
(18)

where \(\mathbf{n}\) is the exterior unit normal vector. Dynamic boundary conditions for the upper and lower layers are assumed to satisfy Manning friction law and combined friction law that couples Coulomb friction law and Manning friction law, respectively.

$$\left.\begin{array}{l}\mathbf{pn}-\mathbf n\left(\mathbf n\cdot\textbf{pn}\right)=-\gamma_1\mathbf gn_b\left({\mathbf u}_1-{\mathbf u}_2\right)\left|{\mathbf u}_1-{\mathbf u}_2\right|/h_1^{4/3}\\\mathbf{pn}-\mathbf n\left(\mathbf n\cdot\textbf{pn}\right)=-\left[\left({\mathbf u}_2/\left|{\mathbf u}_2\right|\right)c_{d\;}\text{tan }\varphi_{bed}\left(\mathbf n\cdot\textbf{pn}\right)+\left(1-c_d\right)\gamma_{2\;}\mathbf gn_b{\mathbf u}_2\left|{\mathbf u}_2\right|/h_2^{4/3}\right]\end{array}\right\}$$
(19)

where pn, n·pn and pnn(n·pn) represent the negative traction vector, normal pressure, and negative shear traction, respectively; g = (gx, gy, gz) is the gravity components.

Depth-integrated equations for upper layer

Before driving the equations by integration, some mean values are defined as follows:

$$\overline u=\frac1h\int\limits_{z_1}^{z_2}udz;\;\overline v=\frac1h\int\limits_{z_1}^{z_2}\overset{}{vdz;\;\overline w}=\frac1h\int\limits_{z_1}^{z_2}wdz;\;\overline{\boldsymbol\tau}=\frac1h\int\limits_{z_1}^{z_2}\tau dz$$
(20)

where z1 and z2 refer to the top-bottom boundaries of any layer with a thickness h and a stress tensor τ. The superscript “–” refers to the depth-averaged form of any value.

Using Leibniz’s formula to integrate the mass balance equation of the upper layer

$$\begin{array}{c}\underset{{z}_{m}}{\overset{{z}_{t}}{\int }}\left[\frac{\partial {\gamma }_{1}}{\partial t}+\frac{\partial }{\partial x}\left({\gamma }_{1}{u}_{1}\right)+\frac{\partial }{\partial y}\left({\gamma }_{1}{v}_{1}\right)+\frac{\partial }{\partial z}\left({\gamma }_{1}{w}_{1}\right)\right]dz=\frac{\partial }{\partial t}\underset{{z}_{m}}{\overset{{z}_{t}}{\int }}{\gamma }_{1}dz-{\gamma }_{1}\left({z}_{t}\right)\frac{\partial {z}_{t}}{\partial x}+{\gamma }_{1}\left({z}_{m}\right)\frac{\partial {z}_{m}}{\partial x}\\ +\frac{\partial }{\partial x}\underset{{z}_{m}}{\overset{{z}_{t}}{\int }}\left({\gamma }_{1}{u}_{1}\right)dz-{\gamma }_{1}\left({z}_{t}\right){u}_{1}\left({z}_{t}\right)\frac{\partial {z}_{t}}{\partial x}+{\gamma }_{1}\left({z}_{m}\right){u}_{1}\left({z}_{m}\right)\frac{\partial {z}_{m}}{\partial x}\\ +\frac{\partial }{\partial y}\underset{{z}_{m}}{\overset{{z}_{t}}{\int }}\left({\gamma }_{1}{v}_{1}\right)dz-{\gamma }_{1}\left({z}_{t}\right){v}_{1}\left({z}_{t}\right)\frac{\partial {z}_{t}}{\partial y}+{\gamma }_{1}\left({z}_{m}\right){v}_{1}\left({z}_{m}\right)\frac{\partial {z}_{m}}{\partial y}\\ +{\gamma }_{1}\left({z}_{t}\right){w}_{1}\left({z}_{t}\right)-{\gamma }_{1}\left({z}_{m}\right){w}_{1}\left({z}_{m}\right)\end{array}$$
(21)

We assume that ∂h1/∂t = ∂zt/∂t–∂zm/∂t and then couple Eqs. (15) and (21) to obtain

$$\frac{\partial }{\partial t}\left({\gamma }_{1}{h}_{1}\right)+\frac{\partial }{\partial x}\left({\gamma }_{1}{h}_{1}{\overline{u} }_{1}\right)+\frac{\partial }{\partial y}\left({\gamma }_{1}{h}_{1}{\overline{v} }_{1}\right)=-{\gamma }_{1}\left({z}_{m}\right){E}_{m}$$
(22)

Take the momentum equation in x direction as an example, its left-hand side is changed into

$$\begin{array}{c}\underset{{z}_{m}}{\overset{{z}_{t}}{\int }}\left(LHS\right)dz\underset{{z}_{m}}{\overset{{z}_{t}}{\int }}\left[\frac{\partial }{\partial t}\left({\gamma }_{1}{u}_{1}\right)+\frac{\partial }{\partial x}\left({\gamma }_{1}{u}_{1}^{2}\right)+\frac{\partial }{\partial y}\left({\gamma }_{1}{u}_{1}{v}_{1}\right)+\frac{\partial }{\partial z}\left({\gamma }_{1}{u}_{1}{w}_{1}\right)\right]dz=\frac{\partial }{\partial t}\left({\gamma }_{1}{h}_{1}{\overline{u} }_{1}\right)+\frac{\partial }{\partial x}\left({\gamma }_{1}{h}_{1}{\overline{u} }_{1}^{2}\right)+\frac{\partial }{\partial y}\left({\gamma }_{1}{h}_{1}\overline{u }{\overline{v} }_{1}\right)\\ +{\gamma }_{1}\left({z}_{t}\right){u}_{1}\left({z}_{t}\right)\left[{w}_{1}\left({z}_{t}\right)-\frac{\partial {z}_{t}}{\partial t}-{u}_{1}\left({z}_{t}\right)\frac{\partial {z}_{t}}{\partial x}-{v}_{1}\left({z}_{t}\right)\frac{\partial {z}_{t}}{\partial y}\right]\\ -{\gamma }_{1}\left({z}_{m}\right){u}_{1}\left({z}_{m}\right)\left[{w}_{1}\left({z}_{m}\right)-\frac{\partial {z}_{m}}{\partial t}-{u}_{1}\left({z}_{m}\right)\frac{\partial {z}_{m}}{\partial x}-{v}_{1}\left({z}_{m}\right)\frac{\partial {z}_{m}}{\partial y}\right]\end{array}$$
(23)

By coupling Eqs. (15) and (23) to obtain

$$\underset{{z}_{m}}{\overset{{z}_{t}}{\int }}\left(LHS\right)dz=\frac{\partial }{\partial t}\left({\gamma }_{1}{h}_{1}{\overline{u} }_{1}\right)+\frac{\partial }{\partial x}\left({\gamma }_{1}{h}_{1}{\overline{u} }_{1}^{2}\right)+\frac{\partial }{\partial y}\left({\gamma }_{1}{h}_{1}{\overline{u} }_{1}{\overline{v} }_{1}\right)+{\gamma }_{1}\left({z}_{m}\right){u}_{1}\left({z}_{m}\right){E}_{m}$$
(24)

The right-hand side of the x-momentum equation for the upper layer yields

$$\begin{array}{c}\underset{{z}_{m}}{\overset{{z}_{t}}{\int }}\left(RHS\right)dz=\underset{{z}_{m}}{\overset{{z}_{t}}{\int }}-\left(\frac{\partial {\tau }_{xx}}{\partial x}+\frac{\partial {\tau }_{xy}}{\partial y}+\frac{\partial {\tau }_{xz}}{\partial z}\right)dz\\ \text{\hspace{0.05em}}=-\frac{\partial }{\partial x}\left({h}_{1}{\overline{\tau }}_{xx}\right)-\frac{\partial }{\partial y}\left({h}_{1}{\overline{\tau }}_{xy}\right)+{\tau }_{xx}\left({z}_{t}\right)\frac{\partial {z}_{t}}{\partial x}-{\tau }_{xx}\left({z}_{m}\right)\frac{\partial {z}_{m}}{\partial x}+{\tau }_{xy}\left({z}_{t}\right)\frac{\partial {z}_{t}}{\partial y}-{\tau }_{xy}\left({z}_{m}\right)\frac{\partial {z}_{m}}{\partial y}-{\tau }_{xz}\left({z}_{t}\right)+{\tau }_{xz}\left({z}_{m}\right)\end{array}$$
(25)

Based on Eq. (18), kinematic and stress condition at the free surfaces are as follows:

$$\left.\begin{array}{c}{\tau }_{xy}\left({z}_{t}\right)={\tau }_{xx}\left({z}_{t}\right)={\tau }_{xz}\left({z}_{\text{t}}\right)={\tau }_{xy}\left({z}_{m}\right)=0\\ {\overline{\tau }}_{xx}=\frac{1}{2}\left[{\tau }_{xx}\left({z}_{t}\right)+{\tau }_{xx}\left({z}_{m}\right)\right]=\frac{1}{2}{\gamma }_{1}g{h}_{1}\end{array}\right\}$$
(26)

With Eq. (26), the right-hand side of the x-momentum equation is changed into

$$\underset{{Z}_{m}}{\overset{{Z}_{t}}{\int }}\left(RHS\right)dz=-\frac{\partial }{\partial x}\left(\frac{1}{2}{\gamma }_{1}g{h}_{1}^{2}\right)-{\gamma }_{1}g{h}_{1}\frac{\partial {z}_{m}}{\partial x}+{\tau }_{xz}\left({z}_{m}\right)$$
(27)

Thus, we obtain the depth-averaged x-momentum equation of the upper layer as

$$\begin{gathered} \frac{\partial }{\partial t}\left( {{\gamma_1}{h_1}{{\bar u}_1}} \right) + \frac{\partial }{\partial x}\left( {{\gamma_1}{h_1}\bar u_1^2 + \frac{1}{2}{\gamma_1}gh_1^2} \right) + \frac{\partial }{\partial y}\left( {{\gamma_1}{h_1}{{\bar u}_1}{{\bar v}_1}} \right) = - {\gamma_1}\left( {z_m} \right){u_1}\left( {z_m} \right){E_m} \hfill \\ - {\gamma_1}g{h_1}\frac{{\partial {z_m}}}{\partial x} - \frac{{{\gamma_1}{g_z}{n_b}}}{{h_1^{1/3}}}\left( {{{\bar u}_1} - {{\bar u}_2}} \right)\left| {{{{\mathbf{\bar u}}}_1} - {{{\mathbf{\bar u}}}_2}} \right| \hfill \\ \end{gathered}$$
(28)

Using similar procedure, the depth-averaged y-momentum component for the upper layer is obtained

$$\begin{gathered} \frac{\partial }{\partial t}\left( {{\gamma_1}{h_1}{{\bar v}_1}} \right) + \frac{\partial }{\partial x}\left( {{\gamma_1}{h_1}{{\bar u}_1}{{\bar v}_1}} \right) + \frac{\partial }{\partial y}\left( {{\gamma_1}{h_1}\bar v_1^2 + \frac{1}{2}{\gamma_1}gh_1^2} \right) = - {\gamma_1}\left( {z_m} \right){v_1}\left( {z_m} \right){E_m} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {\gamma_1}g{h_1}\frac{{\partial {z_m}}}{\partial y} - \frac{{{\gamma_1}{g_z}{n_b}}}{{h_1^{1/3}}}\left( {{{\bar v}_1} - {{\bar v}_2}} \right)\left| {{{{\mathbf{\bar u}}}_1} - {{{\mathbf{\bar u}}}_2}} \right| \hfill \\ \end{gathered}$$
(29)

Depth-integrated equations for lower layer

Also using the Leibnitz rule to interchange the mass balance equation of the lower layer

$$\begin{gathered} \int\limits_{z_b}^{z_m} {\left[ {\frac{{\partial {\gamma_2}}}{\partial t} + \frac{\partial }{\partial x}\left( {{\gamma_2}{u_2}} \right) + \frac{\partial }{\partial y}\left( {{\gamma_2}{v_2}} \right) + \frac{\partial }{\partial z}\left( {{\gamma_2}{w_2}} \right)} \right]dz} = \frac{\partial }{\partial t}\int\limits_{z_b}^{z_m} {\gamma_2} dz - {\gamma_2}\left( {z_m} \right)\frac{{\partial {z_m}}}{\partial x} + {\gamma_2}\left( {z_b} \right)\frac{{\partial {z_b}}}{\partial x} \hfill \\ +\; \frac{\partial }{\partial x}\int\limits_{z_b}^{z_m} {\left( {{\gamma_2}{u_2}} \right)dz} - {\gamma_2}\left( {z_m} \right){u_2}\left( {z_m} \right)\frac{{\partial {z_m}}}{\partial x} + {\gamma_2}\left( {z_b} \right){u_2}\left( {z_b} \right)\frac{{\partial {z_b}}}{\partial x} \hfill \\ +\; \frac{\partial }{\partial y}\int\limits_{z_b}^{z_m} {\left( {{\gamma_2}{v_2}} \right)dz} - {\gamma_2}\left( {z_m} \right){v_2}\left( {z_m} \right)\frac{{\partial {z_m}}}{\partial y} + {\gamma_2}\left( {z_b} \right){v_2}\left( {z_b} \right)\frac{{\partial {z_b}}}{\partial y} \hfill \\ +\; {\gamma_2}\left( {z_m} \right){w_2}\left( {z_m} \right) - {\gamma_2}\left( {z_b} \right){w_2}\left( {z_b} \right) \hfill \\ \end{gathered}$$
(30)

Coupling Eqs. (17) and (30) to obtain

$$\frac{\partial }{\partial t}\left( {{\gamma_2}{h_2}} \right) + \frac{\partial }{\partial x}\left( {{\gamma_2}{h_2}{{\bar u}_2}} \right) + \frac{\partial }{\partial y}\left( {{\gamma_2}{h_2}{{\bar v}_2}} \right) = {\gamma_2}\left( {z_m} \right){E_m} + {\gamma_2}\left( {z_b} \right){E_b}$$
(31)

Integrating the momentum equation for this layer is similar with that of the upper layer. The left-hand side of the x-momentum equation of the lower layer is written as follows:

$$\begin{array}{c}\underset{{z}_{b}}{\overset{{z}_{m}}{\int }}\left(LHS\right)dz=\underset{{z}_{b}}{\overset{{z}_{m}}{\int }}\left[\frac{\partial }{\partial t}\left({\gamma }_{2}{u}_{2}\right)+\frac{\partial }{\partial x}\left({\gamma }_{2}{u}_{2}^{2}\right)+\frac{\partial }{\partial y}\left({\gamma }_{2}{u}_{2}{v}_{2}\right)+\frac{\partial }{\partial z}\left({\gamma }_{2}{u}_{2}{w}_{2}\right)\right]dz=\frac{\partial }{\partial t}\left({\gamma }_{2}{h}_{2}{\overline{u} }_{2}\right)+\frac{\partial }{\partial x}\left({\gamma }_{2}{h}_{2}{\overline{u} }_{2}^{2}\right)+\frac{\partial }{\partial y}\left({\gamma }_{2}{h}_{2}{\overline{u} }_{2}{\overline{v} }_{2}\right)\\ +{\gamma }_{2}\left({z}_{m}\right){u}_{2}\left({z}_{m}\right)\left[{w}_{2}\left({z}_{m}\right)-\frac{\partial {z}_{m}}{\partial t}-{u}_{2}\left({z}_{m}\right)\frac{\partial {z}_{m}}{\partial x}-{v}_{2}\left({z}_{m}\right)\frac{\partial {z}_{m}}{\partial y}\right]\\ -{\gamma }_{2}\left({z}_{b}\right){u}_{2}\left({z}_{b}\right)\left[{w}_{2}\left({z}_{b}\right)-\frac{\partial {z}_{b}}{\partial t}-{u}_{2}\left({z}_{b}\right)\frac{\partial {z}_{b}}{\partial x}-{v}_{2}\left({z}_{b}\right)\frac{\partial {z}_{b}}{\partial y}\right]\end{array}$$
(32)

By applying the kinematic boundary conditions (Eq. 17), the left-hand side of the x-momentum equation of the lower layer is changed into

$$\underset{{Z}_{b}}{\overset{{Z}_{m}}{\int }}\left(LHS\right)dz=\frac{\partial }{\partial t}\left({\gamma }_{2}{h}_{2}{\overline{u} }_{2}\right)+\frac{\partial }{\partial x}\left({\gamma }_{2}{h}_{2}{\overline{u} }_{2}^{2}\right)+\frac{\partial }{\partial y}\left({\gamma }_{2}{h}_{2}{\overline{u} }_{2}{\overline{v} }_{2}\right)-{\gamma }_{2}\left({z}_{m}\right){u}_{1}\left({z}_{m}\right){E}_{m}-{\gamma }_{2}\left({z}_{b}\right){u}_{2}\left({z}_{b}\right){E}_{b}$$
(33)

The right-hand side of the x-momentum equation for the lower layer yields

$$\begin{array}{c}\underset{{z}_{b}}{\overset{{z}_{m}}{\int }}\left(RHS\right)dz=\underset{{z}_{b}}{\overset{{z}_{m}}{\int }}-\left(\frac{\partial {\tau }_{xx}}{\partial x}+\frac{\partial {\tau }_{xy}}{\partial y}+\frac{\partial {\tau }_{xz}}{\partial z}\right)dz\\ \text{\hspace{0.05em}}=-\frac{\partial }{\partial x}\left({h}_{2}{\overline{\tau }}_{xx}\right)+\frac{\partial }{\partial y}\left({h}_{2}{\overline{\tau }}_{xy}\right)+{\tau }_{xx}\left({z}_{m}\right)\frac{\partial {z}_{m}}{\partial x}-{\tau }_{xx}\left({z}_{b}\right)\frac{\partial {z}_{b}}{\partial x}+{\tau }_{xy}\left({z}_{m}\right)\frac{\partial {z}_{m}}{\partial y}-{\tau }_{xy}\left({z}_{b}\right)\frac{\partial {z}_{b}}{\partial y}-{\tau }_{xz}\left({z}_{m}\right)+{\tau }_{xz}\left({z}_{b}\right)\end{array}$$
(34)

We assume that the normal stresses in the z direction are hydrostatic and thus

$${\tau }_{zz}\left({z}_{b}\right)={\gamma }_{1}g{h}_{1}+{\gamma }_{2}g{h}_{2}$$
(35)
$${\overline{\tau }}_{zz}=\frac{{\tau }_{zz}\left({z}_{m}\right)+{\tau }_{zz}\left({z}_{b}\right)}{2}=\frac{1}{2}\left(2{\gamma }_{1}g{h}_{1}+{\gamma }_{2}g{h}_{2}\right)$$
(36)

The depth-averaged normal stresses are related to the normal stress based on the Mohr–Coulomb theory and so that

$${\overline{\tau }}_{xx}={\overline{\tau }}_{yy}={k}_{ap}{\overline{\tau }}_{zz}=\frac{1}{2}{k}_{ap}\left(2{\gamma }_{1}g{h}_{1}+{\gamma }_{2}g{h}_{2}\right)$$
(37)

where kap is the lateral stress coefficient. By neglecting the lateral shear stress terms in Eq. (34), the right side of the x-momentum equation for the lower layer is expressed as follows:

$$\underset{{z}_{b}}{\overset{{z}_{m}}{\int }}\left(RHS\right)dz=-\frac{\partial }{\partial x}\left[\frac{1}{2}{k}_{ap}\left(2{\gamma }_{1}g{h}_{1}{h}_{2}+{\gamma }_{2}g{h}_{2}^{2}\right)\right]+{\gamma }_{1}g{h}_{1}\frac{\partial {z}_{m}}{\partial x}-{k}_{ap}\left({\gamma }_{1}g{h}_{1}+{\gamma }_{2}g{h}_{2}\right)\frac{\partial {z}_{b}}{\partial x}-{\tau }_{xz}\left({z}_{m}\right)+{\tau }_{xz}\left({z}_{m}\right)$$
(38)

Thus, we obtain the depth-averaged x-momentum equation of the lower layer as follows:

$$\begin{gathered} \frac{\partial }{\partial t}\left( {{\gamma_2}{h_2}{{\bar u}_2}} \right) + \frac{\partial }{\partial x}\left( {{\gamma_2}{h_2}\bar u_2^2 + \frac{1}{2}{k_{ap}}{\gamma_2}gh_2^2 + {k_{ap}}{\gamma_1}g{h_1}{h_2}} \right) + \frac{\partial }{\partial y}\left( {{\gamma_2}{h_2}{{\bar u}_2}{{\bar v}_2}} \right) = {\gamma_2}\left( {z_m} \right){u_1}\left( {z_m} \right){E_m} + {\gamma_2}\left( {z_b} \right){u_2}\left( {z_b} \right){E_b} \hfill \\ {\kern 1pt} + {\gamma_1}g{h_1}\frac{{\partial {z_m}}}{\partial x} - {k_{ap}}\left( {{\gamma_{1}}g{h_{1}} + {\gamma_{2}}g{h_{2}}} \right)\frac{{\partial {z_b}}}{\partial x} + \frac{{{\gamma_1}{g_z}{n_b}}}{{h_1^{1/3}}}\left( {{{\bar u}_1} - {{\bar u}_2}} \right)\left| {{{{\mathbf{\bar u}}}_1} - {{{\mathbf{\bar u}}}_2}} \right| \hfill \\ - {\gamma_{2}}\left[ {\frac{{{{\bar u}_2}}}{{\left| {{{{\mathbf{\bar u}}}_2}} \right|}}{c_d}{g_z}{h_2}\tan {\varphi_{bed}} + \left( {1 - {c_d}} \right){g_z}{n_b}\frac{{{{\bar u}_2}\left| {{{{\mathbf{\bar u}}}_2}} \right|}}{{h_2^{1/3}}}} \right] \hfill \\ \end{gathered}$$
(39)

Using similar procedure, the depth-averaged y-momentum component for the lower layer is obtained

$$\begin{gathered} \frac{\partial }{\partial t}\left( {{\gamma_2}{h_2}{{\bar v}_2}} \right) + \frac{\partial }{\partial x}\left( {{\gamma_2}{h_2}{{\bar u}_2}{{\bar v}_2}} \right) + \frac{\partial }{\partial y}\left( {{\gamma_2}{h_2}\bar v_2^2 + \frac{1}{2}{k_{ap}}{\gamma_2}gh_2^2 + {k_{ap}}{\gamma_1}g{h_1}{h_2}} \right) = {\gamma_2}\left( {z_m} \right){v_1}\left( {z_m} \right){E_m} + {\gamma_2}\left( {z_b} \right){v_2}\left( {z_b} \right){E_b} \hfill \\ + {\gamma_1}g{h_1}\frac{{\partial {z_m}}}{\partial y} - {k_{ap}}\left( {{\gamma_{1}}g{h_{1}} + {\gamma_{2}}g{h_{2}}} \right)\frac{{\partial {z_b}}}{\partial y} + \frac{{{\gamma_1}{g_z}{n_b}}}{{h_1^{1/3}}}\left( {{{\bar v}_1} - {{\bar v}_2}} \right)\left| {{{{\mathbf{\bar u}}}_1} - {{{\mathbf{\bar u}}}_2}} \right| \hfill \\ - {\gamma_{2}}\left[ {\frac{{{{\bar v}_2}}}{{\left| {{{{\mathbf{\bar u}}}_2}} \right|}}{c_d}{g_z}{h_2}\tan {\varphi_{bed}} + \left( {1 - {c_d}} \right){g_z}{n_b}\frac{{{{\bar v}_2}\left| {{{{\mathbf{\bar u}}}_2}} \right|}}{{h_2^{1/3}}}} \right] \hfill \\ \end{gathered}$$
(40)

To address the variations of the sediment in the lower layer and the bed material, the mass conservation equations are integrated from the base to the interface using Leibniz’s rule to swap the order of differentiation and integration, and then simplified by using conditions (4) and (5), which gives

$$\frac{\partial }{\partial t}\left({\gamma }_{2}{h}_{2}{c}_{d}\right)+\frac{\partial }{\partial x}\left({\gamma }_{2}{h}_{2}{c}_{d}{\overline{u} }_{2}\right)+\frac{\partial }{\partial y}\left({\gamma }_{2}{h}_{2}{c}_{d}{\overline{v} }_{2}\right)={\gamma }_{2}\left({z}_{b}\right)\left(1-p\right){E}_{b}$$
(41)

where p is the sediment porosity. To describe the variation of bed terrain caused by debris flow erosion, the mass conservation equations for bed materials are needed as follows:

$$\frac{\partial {z}_{b}}{\partial t}=-{E}_{b}$$
(42)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., He, S. Influence of runoff on debris flow propagation at a catchment scale: a case study. Landslides (2024). https://doi.org/10.1007/s10346-024-02255-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10346-024-02255-3

Keywords

Navigation