Skip to main content
Log in

Mechanisms of rockslide-debris avalanches and the associated air blast—insights from the Su Village rockslide-debris avalanche in Zhejiang, China

Mechanisms of rockslide-debris avalanches and air blast

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Typhoon-induced rockslide-debris avalanches are among the most dramatic geohazard in coastal mountainous regions, which commonly result in serious casualties and economic loss. In September 2016, typhoon “Catfish” attacked the Su Village in Southeastern China and triggered a devastating rockslide-debris avalanche. The detached mass traveled 1000 m, generated a powerful air blast, and resulted in 27 deaths. In this study, we performed a thorough survey to investigate the avalanche characteristics and damages caused by air blasts. Meanwhile, numerical modeling and video analysis were conducted to investigate the avalanche dynamics and impacts of the air blast. Results indicated that the avalanche movement lasted for approximately 60 s with a maximum velocity of 42 m/s. The entrainment effect greatly enlarged the avalanche volume and extended the avalanche runout. Moreover, the generated air blast indicated a maximum pressure of 2.5 kPa and caused tree breakage beyond the avalanche runout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Data availability

Data will be made available on request.

References

  • Aaron J, McDougall S (2019) Rock avalanche mobility: the role of path material. Eng Geol 257:105126

    Article  Google Scholar 

  • Bartelt P, Buser O, Vera Valero C, Bühler Y (2016) Configurational energy and the formation of mixed flowing powder snow and ice avalanches. Ann Glaciol 57(71):179–188

    Article  Google Scholar 

  • Bartelt P, Bebi P, Feistl T, Buser O, Caviezel A (2018a) Dynamic magnification factors for tree blow-down by powder snow avalanche air blasts. Nat Hazards Earth Syst Sci 18:759–764

    Article  Google Scholar 

  • Bartelt P, Christen M, Bühler Y, Buser O (2018b) Thermomechanical modelling of rock avalanches with debris, ice and snow entrainment. Numeric Methods Geotech Eng IX:1047–1054

  • BFF/SLF (1984) Richtlinien zur Berücksichtigung der Lawinengefahr bei raumwirksamen T ätigkeiten, Bundesamt für Forstwesen/Eidgenössisches Institut für Schnee- und Lawinenforschung, Bern, (in German)

  • Bilal M, Xing AG, Zhuang Y, Zhang YB, Jin KP, Zhu YQ, Leng YY (2021) Coupled 3D numerical model for a landslide-induced impulse water wave: a case study of the Fuquan landslide. Eng Geol 290:106209

    Article  Google Scholar 

  • Buser O, Bartelt P (2015) An energy-based method to calculate streamwise density variations in snow avalanches. J Glaciol 61(227):563–574

    Article  Google Scholar 

  • Caviezel A, Margreth S, Ivanova K, Sovilla B, Bartelt P (2021) Powder snow impact of tall vibrating structures. Eccomas Proceedia Compdyn 5318–5330

  • Christen M, Kowalski J, Bartelt P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14

    Article  Google Scholar 

  • Cook AG, Weinstein P, Centeno JS (2005) Health effects of natural dust. Biol Trace Elem Res 103:1–15

    Article  Google Scholar 

  • Cox SC, McSaveney MJ, Spencer J, Allen SK, Ashraf S, Hancox GT, Sirguey P, Salichon J, Ferris BG (2015) Rock avalanche on 14 July 2014 from Hillary Ridge, Aoraki/Mount Cook, New Zealand. Landslides 12:395–402

    Article  Google Scholar 

  • Crosta GB, Imposimato S, Roddeman D (2009) Numerical modelling of entrainment/deposition in rock and debris-avalanches. Eng Geol 109:135–145

    Article  Google Scholar 

  • Cui YL, Hu JH, Xu C, Zheng J, Wei JB (2021) A catastrophic natural disaster chain of typhoon–rainstorm-landslide-barrier lake-flooding in Zhejiang Province. China J Mount Sci 18(8):2108–2119

    Article  Google Scholar 

  • Dammeier F, Moore JR, Haslinger F, Loew S (2011) Characterization of alpine rockslides using statistical analysis of seismic signals. J Geophys Res 116:F04024

    Article  Google Scholar 

  • De Blasio FV, Dattola G, Crosta GB (2018) Extremely energetic rockfalls. J Geophys Res Earth Surf 123:2392–2421

    Article  Google Scholar 

  • Dufresne A (2014) An overview of rock avalanche-substrate interactions. An overview of rock avalanche-substrate interactions. In: Sassa K, Canuti P, Yin Y (eds) Landslide science for a safer geoenvironment. Springer, Cham, pp 345–349

    Chapter  Google Scholar 

  • Dufresne A, Wolken GJ, Hibert C, Bessette-Kirtoon EK, Coe JA, Geertsema M, Ekström G (2019) The 2016 Lamplugh rock avalanche, Alaska: deposit structures and emplacement dynamics. Landslides 16:2301–2319

    Article  Google Scholar 

  • Fei JB, Liu ZK, Jie YX (2023) Immiscible two-phase model for air blasts created during natural avalanches. Geol Soc Am Bull 135:2155–2176

    Google Scholar 

  • Feistl T, Bebi P, Christen M, Margreth S, Diefenbach L, Bartelt P (2015) Forest damage and snow avalanche flow regime. Nat Hazards Earth Syst Sci 15(6):1275–1288

    Article  Google Scholar 

  • Finlay WH (2001) The mechanics of inhaled pharmaceutical aerosols. Academic press

  • Gao Y, Li B, Gao HY, Chen LC, Wang FY (2020) Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area: a case study of the Shuicheng “7.23” landslide in Guizhou. China Landslides 17:1663–1677

    Article  Google Scholar 

  • Gardezi H, Xing AG, Bilal M, Zhuang Y, Muhammad S, Janjua S (2021) Preliminary investigation and dynamic analysis of a multiphase ice-rock avalanche on July 5, 2021, in the upper Naltar valley, Gilgit, Pakistan. Landslides 19:451–463

    Article  Google Scholar 

  • Gardezi H, Xing AG, Bilal M, Zhuang Y, Janjua S (2023) Formation and propagation of dust cloud induced by Ultar rock avalanche on April 9, 2018, in Karimabad, Hunza, Pakistan. Landslides 20:983–997

    Article  Google Scholar 

  • Gorynina O, Bartelt P (2023) Powder snow avalanche impact on hanging cables. Int J Impact Eng 173:104422

    Article  Google Scholar 

  • Grigoryan S, Urubayev N, Nekrasov I (1982) Experimental investigation of an avalanche air blast. Data Glaciol Stud 44:87–93

    Google Scholar 

  • Guo J, Cui YF, Xu WJ, Yin YZ, Li Y, Jin W (2022) Numerical investigation of the landslide-debris flow transformation process considering topographic and entrainment effects: a case study. Landslides 19:773–788

    Article  Google Scholar 

  • Harris ML, Sapko MJ (2019) Floor dust erosion during early stages of coal dust explosion development. Int J Min Sci Technol 29:825–830

    Article  Google Scholar 

  • Helmstetter A, Sornette D, Grasso JR, Anderson JV, Gluzman S, Pisarenko V (2004) Slider block friction model for landslides: application to Vaiont and La Clapière landslides. J Geophys Res Solid Earth 109:B02409

    Article  Google Scholar 

  • Hu X, Bürgmann R, Lu Z, Handwerger al, Wang T, Miao R, (2019) Mobility, thickness, and hydraulic diffusivity of the slow-moving Monroe landslide in California revealed by L-band satellite radar interferometry. J Geophys Res Solid Earth 124(7):7504–7518

    Article  Google Scholar 

  • Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32(4):610–623

    Article  Google Scholar 

  • Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Geol Soc Am Bull 116(9–10):1240–1252

    Article  Google Scholar 

  • Hungr O (2006) Rock avalanche occurrence, process, and modeling, In: Evans SG, Mugnozza GS, Strom A, Hermanns RL. (Eds.), Landslides from massive rock slope failure. Proceedings of the NATO Advanced Research Workshop on Massive Rock Slope Failure: new Methods for Hazard Assessment, Celano, Italy, 16–21 June 2002, pp. 243–266

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194

    Article  Google Scholar 

  • Hsü KJ (1975) Catastrophic debris streams (Sturzstroms) generated by rockfalls. Geol Soc Am Bull 86:129–140

    Article  Google Scholar 

  • Iverson RM, Reid ME, Logan M, LaHusen RG, Godt JW, Griswold JP (2010) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat Geosci 4:116–121

    Article  Google Scholar 

  • Jibson RW (2002) A public health issue related to collateral seismic hazards: the valley fever outbreak triggered by the 1994 Northridge, California earthquake. Surv Geophys 23:511–528

    Article  Google Scholar 

  • Jeong SH, Lee SH (2020) Effects of windbreak Forest according to tree species and planting methods based on wind tunnel experiments. For Sci Technol 16(4):188–194

    Google Scholar 

  • Kargel JS et al (2016) Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science 351:aac8353

  • Li P, Shen W, Hou XK, Li TL (2019) Numerical simulation of the propagation process of a rapid flow-like landslide considering bed entrainment: a case study. Eng Geol 263:105287

    Article  Google Scholar 

  • Liang X, Segoni S, Yin KL, Chai B, Tofani V, Casagli N (2022) Characteristics of landslides and debris flows triggered by extreme rainfall in Daoshi Town during the 2019 Typhoon Lekima, Zhejiang Province, China. Landslides 19:1735–1749

    Article  Google Scholar 

  • Liu Z, Su L, Zhang C, Iqbal J, Hu B, Dong Z (2020) Investigation of the dynamic process of the Xinmo landslide using the discrete element method. Comput Geotech 123:103561

    Article  Google Scholar 

  • McDougall S, Boultbee N, Hungr O, Stead D, Schwab JW (2006) The Zymoetz River landslide, British Columbia, Canada: description and dynamic analysis of a rockslide–debris flow. Landslides 3:195–204

    Article  Google Scholar 

  • McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097

    Article  Google Scholar 

  • Morrissey MM, Wieczorek GF, Savage WZ (1999) Airblasts generated from rock-fall impacts: analysis of the 1996 Happy Isles event in Yosemite National Park. J Geophys Res Solid Earth 104:23189–23198

    Article  Google Scholar 

  • Ouyang CJ, He SM, Xu Q, Luo Y, Zhang WC (2013) A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain. Comput Geosci 52:1–10

    Article  Google Scholar 

  • Ouyang CJ, Zhao W, Xu Q, Peng DL, Li WL, Wang DP, Zhou S, Hou SW (2018) Failure mechanisms and characteristics of the 2016catastrophic rockslide at Su Village, Lishui, China. Landslides 15:1391–1400

    Article  Google Scholar 

  • Penna IM, Hermanns RL, Nicolet P, Morken OA, Jaboyedoff M (2021) Air blasts caused by large slope collapses. Geol Soc Am 133:939–948

    Article  Google Scholar 

  • Pirulli M, Pastor M (2012) Numerical study on the entrainment of bed material into rapid landslides. Géotechnique 62(11):959–972

    Article  Google Scholar 

  • Scheidegger AE (1973) On the prediction of reach and velocity of catastrophic landslides. Rock Mech 5:231–236

    Article  Google Scholar 

  • Shugar et al (2021) A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 373:300–306

    Article  Google Scholar 

  • Stoffel L, Margreth S, Schaer M, Christen M, Bühler Y, Bartelt P (2016) Powder Snow Avalanche Engineering: new methods to calculate air-blast pressures for hazard mapping. Living with natural risks, Koboltschnig, G. (Ed.):416–425

  • Tian H, Gan JJ, Jiang H, Tang C, Luo CT, Wan CH, Xu B, Gui FL, Liu CY, Liu N (2020) Failure mechanism and kinematics of the deadly September 28th 2016 Sucun Landslide, Suichang, Zhejiang, China. Adv Civil Eng 8828819

  • Wang ZC (2014) Study on the effect of vegetation on slope stability under the wind load. Master Thesis of Chengdu University of Technology, Chengdu (In Chinese with English abstract)

    Google Scholar 

  • Xiao YF, Duan ZD, Xiao YQ, Ou JP, Chang L, Li QS (2011) Typhoon wind hazard analysis for southeast China coastal regions. Struct Saf 33:286–295

    Article  Google Scholar 

  • Zhao T, Crosta GB, Dattola G, Utili S (2018) dynamic fragmentation of jointed rock blocks during rockslide-avalanches: insights from discrete element analyses. J Geophys Res Solid Earth 123:3250–3269

    Article  Google Scholar 

  • Zhou C, Chen PY, Yang SF, Zheng F, Yu H, Tang J, Lu Y, Chen GM, Lu XQ, Zhang XP, Sun J (2022) The impact of Typhoon Lekima (2019) on East China: a postevent survey in Wenzhou City and Taizhou City. Front Earth Sci 16:109–120

    Article  Google Scholar 

  • Zhuang Y, Xu Q, Xing AG (2019) Numerical investigation of the air blast generated by the Wenjia valley rock avalanche in Mianzhu, Sichuan, China. Landslides 16:2499–2508

    Article  Google Scholar 

  • Zhuang Y, Xing AG, Jiang YH, Sun Q, Yan JK, Zhang YB (2022) Typhoon, rainfall and trees jointly cause landslides in coastal regions. Eng Geol 298:106561

    Article  Google Scholar 

  • Zhuang Y, Xu Q, Xing AG, Bilal M, Gnyawali KR (2023a) Catastrophic air blasts triggered by large ice/rock avalanches. Landslide 20:53–64

    Article  Google Scholar 

  • Zhuang Y, Xing AG, Bartelt P, Bilal M, Ding ZW (2023b) Dynamic response and breakage of trees subject to a landslide-induced air blast: implications for air blasts risk assessment in mountainous regions. Nat Hazard 23:1257–1266

    Article  Google Scholar 

  • Zhuang Y, Xing AG, Dave P, Jiang YH, Sun Q, Bilal M, Yan JK (2023c) Elucidating the impacts of trees on landslide initiation throughout a typhoon: preferential infiltration, wind load and root reinforcement. Earth Surf Proc Land. https://doi.org/10.1002/esp.5686

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 4227712) and Open Fund Projects of SKLGP (SKLGP2022K029).

Author information

Authors and Affiliations

Authors

Contributions

YZ: conceptualization, formal analysis, methodology, and writing—original draft; AX: conceptualization, funding acquisition, and supervision; YJ and QS: investigation and resources.

Corresponding author

Correspondence to Aiguo Xing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Y., Xing, A., Jiang, Y. et al. Mechanisms of rockslide-debris avalanches and the associated air blast—insights from the Su Village rockslide-debris avalanche in Zhejiang, China. Landslides 21, 339–352 (2024). https://doi.org/10.1007/s10346-023-02161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-023-02161-0

Keywords

Navigation