Skip to main content

Advertisement

Log in

Investigation of potential debris flows above the Koroška Bela settlement, NW Slovenia, from hydro-technical and conceptual design perspectives

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Debris flows are one of the natural disasters that can occur in the alpine environment, cause large economic damage, and endanger human lives. This study presents an overview of recent research done in relation to the debris flow hazard assessment and conceptual mitigation at the Koroška Bela area in Slovenia. This includes fieldwork, lab experiments, modelling, and a conceptual design of hydro-technical measures to reduce the risk. The results indicate that multiple debris flows occurred in the past in the area but a relatively long period of more than 100 years without an extreme event led to urbanization and development of the area. Magnitudes of the most extreme events as the worst-case scenarios were estimated to be in the range between 100,000 and 400,000 m3, using debris flow modelling and geological information from research trenches. Based on the landslide volumes, such events could also potentially occur in the future in extreme conditions. Additionally, torrential floods could mobilize more than 15,000 m3 of material located along the stream network that can be regarded as potentially unstable. The existing check dam system does not have the capacity to capture this material. Thus, a new check dam and three flexible net barriers could help to reduce the risk due to torrential outbursts or debris flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abraham MT, Satyam N, Reddy SKP, Pradhan B (2020) Runout modeling and calibration of friction parameters of Kurichermala debris flow. Landslides, India. https://doi.org/10.1007/s10346-020-01540-1

    Book  Google Scholar 

  • ARSO (2021) ARSO IDF curves. https://meteo.arso.gov.si/met/sl/climate/tables/%0Aprecip_return_periods_newer/

  • Berger C, Denk M, Graf C et al (2020) Praxishilfe Murgang- und Hangmurenschutznetze. Birmensdorf

  • Bezak N, Jež J, Sodnik J et al (2020) An extreme May 2018 debris flood case study in northern Slovenia: analysis, modelling, and mitigation. Landslides 17. https://doi.org/10.1007/s10346-019-01325-1

  • Bezak N, Peternel T, Medved A, Mikoš M (2021) Climate change impact evaluation on the water balance of the Koroška Bela Area, NW Slovenia. In: Vilimek V, Wang F, Storm A, et al. (eds) Understanding and reducing landslide disaster risk. Springer

  • Bezak N, Sodnik J, Mikoš M (2019) Impact of a random sequence of Debris flows on torrential fan formation. Geosci 9. https://doi.org/10.3390/geosciences9020064

  • Bezak N, Šraj M, Mikoš M (2016) Copula-based IDF curves and empirical rainfall thresholds for flash floods and rainfall-induced landslides. J Hydrol. https://doi.org/10.1016/j.jhydrol.2016.02.058

    Article  Google Scholar 

  • Bezak N, Šraj M, Rusjan S, Mikoš M (2018) Impact of the rainfall duration and temporal rainfall distribution defined using the Huff curves on the hydraulic flood modelling results. Geosci 8. https://doi.org/10.3390/geosciences8020069

  • Bisantino T, Fischer P, Gentile F (2010) Rheological characteristics of debris-flow material in South-Gargano watersheds. Nat Hazards 54:209–223. https://doi.org/10.1007/s11069-009-9462-4

    Article  Google Scholar 

  • Breg Valjavec M, Komac B (2018) Modern settlement of torrential alluvial fans and danger of debris flows: the example of the Upper Sava Valley. In: Pokrajina v visoki ločljivosti, GIS v Sloveniji. pp 139–152

  • Ceriani M, Crosta G, Frattini P, Quattrini S (2000) Evaluation of hydrological hazard on alluvial fans. Interpraevent 2000:213–225

    Google Scholar 

  • Četina M, Rajar R, Hojnik T et al (2006) Case study: numerical simulations of debris flow below Stože, Slovenia. J Hydraul Eng 132:121–130. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:2(121)

    Article  Google Scholar 

  • Dowling CA, Santi PM (2014) Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011. Nat Hazards 71:203–227. https://doi.org/10.1007/s11069-013-0907-4

    Article  Google Scholar 

  • Feys D, Wallevik JE, Yahia A et al (2013) Extension of the Reiner-Riwlin equation to determine modified Bingham parameters measured in coaxial cylinders rheometers. Mater Struct Constr 46:289–311. https://doi.org/10.1617/s11527-012-9902-6

    Article  Google Scholar 

  • FLO 2d (2006) FLO-2D, User‘s Manual

  • Franco-Ramos O, Ballesteros-Cánovas JA, Figueroa-García JE et al (2020) Modelling the 2012 lahar in a sector of Jamapa Gorge (Pico de Orizaba Volcano, Mexico) Using RAMMS and tree-ring evidence. Water (Switzerland) 12. https://doi.org/10.3390/w12020333

  • Haque U, Blum P, da Silva PF et al (2016) Fatal landslides in Europe. Landslides 13:1545–1554. https://doi.org/10.1007/s10346-016-0689-3

    Article  Google Scholar 

  • HEC HMS (2021) HEC HMS User’s Manual, v. 4.7

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194. https://doi.org/10.1007/s10346-013-0436-y

    Article  Google Scholar 

  • Hussin HY, Quan Luna B, Van Westen CJ et al (2012) Parameterization of a numerical 2-D debris flow model with entrainment: a case study of the Faucon catchment, Southern French Alps. Nat Hazards Earth Syst Sci 12:3075–3090. https://doi.org/10.5194/nhess-12-3075-2012

    Article  Google Scholar 

  • Jakob M, Hungr O (2005) Introduction. Debris-flow hazards and related phenomena. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 1–7

    Google Scholar 

  • Janža M, Serianz L, Šram D, Klasinc M (2018) Hydrogeological investigation of landslides Urbas and Čikla above the settlement of Koroška Bela (NW Slovenia) | Hidrogeološke raziskave plazov Urbas in Čikla nad naseljem Koroška Bela (SZ Slovenija). Geologija 61:191–203. https://doi.org/10.5474/geologija.2018.013

    Article  Google Scholar 

  • Jemec Auflič M, Jež J, Popit T et al (2017) The variety of landslide forms in Slovenia and its immediate NW surroundings. Landslides 14:1537–1546. https://doi.org/10.1007/s10346-017-0848-1

    Article  Google Scholar 

  • Jemec Auflič M, Kumelj Š, Peternel T, Jež J (2019) Understanding of landslide risk through learning by doing: case study of Koroška Bela community, Slovenia. Landslides 16:1681–1690. https://doi.org/10.1007/s10346-018-1110-1

    Article  Google Scholar 

  • Jež J, Markelj A, Milanič B et al (2019) Preliminary results of age of the Bela alluvial fan in the Koroška Bela. In: Rožič B (ed) 24th Meeting of Slovenian Geologists. University of Ljubljana, Ljubljana, pp 49–51

    Google Scholar 

  • Jež J, Mikoš M, Trajanova M et al (2008) Koroška Bela alluvial fan - the result of the catastrophic slope events (Karavanke Mountains, NW Slovenia. Geologija 51:219–227. https://doi.org/10.5474/geologija.2008.022

    Article  Google Scholar 

  • Kaitna R, Rickenmann D, Schatzmann M (2007) Experimental study on rheologic behaviour of debris flow material. Acta Geotech 2:71–85. https://doi.org/10.1007/s11440-007-0026-z

    Article  Google Scholar 

  • Kaltak S (2018) Mathematical modeling of debris flows and formation of torrential fans. University of Ljubljana

  • Komac M (2006) Landslide susceptibility map of Slovenia at scale 1: 250,000. Geologija 49:295–309. https://doi.org/10.5474/geologija.2006.022

    Article  Google Scholar 

  • Kronfellner-Krauss G (1984) Extreme sedimentation and gullying of torrents. In: Interpraevent 1984

  • Lavtižar J (1897) Zgodovina župnij in zvonovi v dekaniji Radolica

  • Li X, Zhao J, Kwan JSH (2020) Assessing debris flow impact on flexible ring net barrier: A coupled CFD-DEM study. Comput Geotech 128. https://doi.org/10.1016/j.compgeo.2020.103850

  • Marchi L, D’Agostino V (2004) Estimation of debris-flow magnitude in the Eastern Italian Alps. Earth Surf Process Landforms 29:207–220. https://doi.org/10.1002/esp.1027

    Article  Google Scholar 

  • Marchi L, Tecca PR (1995) Alluvial fans of the eastern Italian Alps: morphometry and depositional processes - Cônes de dejection dans les alpes orientales italiennes: Morphométrie et processus d’accumulation. Geodin Acta 8:20–27. https://doi.org/10.1080/09853111.1995.11105270

    Article  Google Scholar 

  • Mikoš M (2020) After 2000 stože landslide: Part I – Development in landslide research in slovenia | Po zemeljskem plazu stože leta 2000: Del I – RAzvoj raziskovanja zemeljskih plazov v Sloveniji. Acta Hydrotechnica 33:129–153.https://doi.org/10.15292/acta.hydro.2020.09

  • Mikoš M (2021) After 2000 stože landslide: Part ii - development in landslide disaster risk reduction policy in slovenia | Po zemeljskem plazu stože leta 2000: Del ii - razvoj politike zmanjševanja tveganja nesreč zaradi zemeljskih plazov v sloveniji. Acta Hydrotechnica 34:39–59. https://doi.org/10.15292/acta.hydro.2021.04

  • Mikoš M, Bezak N (2021) Debris Flow Modelling Using RAMMS Model in the Alpine Environment With Focus on the Model Parameters and Main Characteristics. Front Earth Sci 8. https://doi.org/10.3389/feart.2020.605061

  • Mikoš M, Brilly M, Fazarinc R, Ribičič M (2006a) Strug landslide in W Slovenia: a complex multi-process phenomenon. Eng Geol 83:22–35. https://doi.org/10.1016/j.enggeo.2005.06.037

    Article  Google Scholar 

  • Mikoš M, Brilly M, Ribičič M (2004a) Floods and landslides in Slovenia. Acta Hydrotechnica 22:113–131

    Google Scholar 

  • Mikoš M, Četina M, Brilly M (2004b) Hydrologic conditions responsible for triggering the Stože landslide, Slovenia. Eng Geol 73:193–213. https://doi.org/10.1016/j.enggeo.2004.01.011

    Article  Google Scholar 

  • Mikoš M, Fazarinc R, Majes B (2007) Delineation of risk area in Log pod Mangartom due to debris flows from the Stože landslide | Določitev ogroženega območja v Logu pod Mangartom zaradi drobirskih tokov s plazu Stože. Acta Geogr Slov 47:171–198. https://doi.org/10.3986/AGS47202

    Article  Google Scholar 

  • Mikoš M, Fazarinc R, Majes B et al (2006b) Numerical simulation of debris flows triggered from the Strug rock fall source area, W Slovenia. Nat Hazards Earth Syst Sci 6:261–270. https://doi.org/10.5194/nhess-6-261-2006

    Article  Google Scholar 

  • Mikoš M, Jemec M, Ribičič M et al (2013) Earthquake-induced landslides in Slovenia: historical evidence and present analyses. In: Ugai K, Yagi H, Wakai A (eds) Earthquake-Induced Landslides. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 225–233

    Chapter  Google Scholar 

  • Mizuyama T, Kobashi S, Ou G (1992) Prediction of debris flow peak discharge. In: Proc. Int. Symp. Interpraevent. Bern, pp 99–108

  • Palovšnik M et al (2017) Following in the footsteps of the destruction of Koroška Bela

  • Peternel T, Jež J, Milanič B et al (2018a) Engineering-geological conditions of landslides above the settlement of Koroška Bela (NW Slovenia) - Inženirskogeološke značilnosti plazov v zaledju naselja Koroška Bela (SZ Slovenija). Geologija 61:177–189. https://doi.org/10.5474/geologija.2018.012

    Article  Google Scholar 

  • Peternel T, Jež J, Milanič B, Markelj A, Jemec Auflič M (2018b) Engineering-geological conditions of landslides above the settlement of Koroška Bela (NW Slovenia) - Inženirskogeološke značilnosti plazov v zaledju naselja Koroška Bela (SZ Slovenija). Geologija 61:177–189. https://doi.org/10.5474/geologija.2018.012

  • Peternel T, Kumelj Š, Oštir K, Komac M (2017) Monitoring the Potoška planina landslide (NW Slovenia) using UAV photogrammetry and tachymetric measurements. Landslides 14:395–406. https://doi.org/10.1007/s10346-016-0759-6

    Article  Google Scholar 

  • RAMMS, Barlelt P, Bieler C et al (2018) RAMMS::DEBRISFLOW User Manual. Davos, Switzerland

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19:47–77. https://doi.org/10.1023/A:1008064220727

    Article  Google Scholar 

  • Scheidl C, Rickenmann D, McArdell BW (2013) Runout prediction of debris flows and similar mass movements. In: Landslide science and practice. Springer

  • Smolar J, Maček M, Petkovšek A (2016) Rheological properties of marine sediments from the port of koper. Acta Geotech Slov 13:57–65

    Google Scholar 

  • Sodnik J, Kumelj Š, Peternel T et al (2017) Identification of landslides as debris flow sources using a multi-model approach based on a field survey–-Koroška Bela, Slovenia. In: Mikos M, Tiwari B, Yin Y, Sassa K (eds) Advancing culture of living with landslides. Springer International Publishing, Cham, pp 1119–1126

    Google Scholar 

  • Sodnik J, Mikoš M (2010) Modeling of a debris flow from the Hrenovec torrential watershed above the village of Kropa - Modeliranje drobirskega toka v hudourniškem območju Hrenovec nad Kropo. Acta Geogr Slov 50:59–84. https://doi.org/10.3986/AGS50103

    Article  Google Scholar 

  • Sodnik J, Mikoš M (2006) Estimation of magnitudes of debris flows in selected torrential watersheds in Slovenia. Acta Geogr Slov 46:93–123. https://doi.org/10.3986/AGS46104

  • Sodnik J, Petje U, Mikoš M (2009) Terrain topography and debris-flow modelling | Topografija površja in modeliranje gibanja drobirskih tokov. Geod Vestn 53:305–318

    Google Scholar 

  • Sodnik J, Vrečko A, Podobnikar T, Mikoš M (2012) Digital terrain models and mathematical modelling of debris flows | Digitalni modeli reliefa in matematično modeliranje drobirskih tokov. Geod Vestn 56:826–837. https://doi.org/10.15292/geodetski-vestnik.2012.04.826-837

  • Takei A (1984) Interdependence of sediment budget between individual torrents and river-system. In: Interpraevent 1984

  • Volkwein A (2014) Flexible debris flow barriers - design and application

  • Volkwein A, Wendeler C, Stiglitz L, Lauber G (2015) New approach for flexible debris flow barriers. In: IABSE Symposium Report. pp 1–7

  • Wendeler C (2016) Debris-flow protection systems for mountain torrents - basic principles for planning and calculation of flexible barriers

  • Wendeler C, Budmir V, Denk M (2018) Debris flow protection with flexible ring net barriers – 10 years of experience. ce/papers 2:1039–1044. https://doi.org/10.1002/cepa.809

  • Wendeler C, Volkwein A (2015) Laboratory tests for the optimization of mesh size for flexible debris-flow barriers. Nat Hazards Earth Syst Sci 15:2597–2604. https://doi.org/10.5194/nhess-15-2597-2015

    Article  Google Scholar 

  • Wendeler C, Volkwein A, McArdell BW, Bartelt P (2019) Load model for designing flexible steel barriers for debris flow mitigation. Can Geotech J 56:893–910. https://doi.org/10.1139/cgj-2016-0157

    Article  Google Scholar 

  • Zupan G (1937) Krajevni leksikon Dravske banovine. Ljubljana: Uprava Krajevnega leksikona Dravske banovine

Download references

Funding

The study was financed by the Division for Rehabilitation after Natural and Other Disasters of the Ministry of the Environment and Spatial Planning of the Republic of Slovenia. Additional financial support was provided by the Slovenian Research Agency through grants P2-0180 and Z1-2638. Anže Markelj’s support with fieldwork is highly appreciated. As well as Mojca Vilfan’s support with English editing. Critical and useful comments of two anonymous reviewers greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejc Bezak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezak, N., Sodnik, J., Maček, M. et al. Investigation of potential debris flows above the Koroška Bela settlement, NW Slovenia, from hydro-technical and conceptual design perspectives. Landslides 18, 3891–3906 (2021). https://doi.org/10.1007/s10346-021-01774-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-021-01774-7

Keywords

Navigation