Skip to main content

Advertisement

Log in

Movement process analysis of the high-speed long-runout Shuicheng landslide over 3-D complex terrain using a depth-averaged numerical model

  • Recent Landslides
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Flow-like landslide is one of the most catastrophic types of natural hazards due to its high velocity and long travel distance. In 2019, a large catastrophic landslide was triggered by heavy rainfall and occurred in Shuicheng County, Guizhou, China. The Shuicheng landslide was characterized by a short slip time, high speed, and long sliding distance, causing significant damages to the downstream communities and properties. Depth-averaged models have been widely used to predict the velocity and runout distance of flow-like landslides. However, most of the existing depth-averaged models have various shortcomings for application in real-world simulations. In this study, a high-performance depth-averaged model taking into account the effects of topography-related vertical acceleration and centrifugal force was used to examine the influence of complex 3-D terrain on the landslide movement process. The simulation results were in satisfactory agreement with the field observations. This work reveals the landslide movement process at different stages, including acceleration, diversion, secondary acceleration, impact, and deposition. The maximum average velocity was predicted to be 35 m/s, with a local maximum velocity exceeding 50 m/s. The seismic records obtained from the adjacent seismic stations and the predicted kinetic energy and velocity of the landslide event revealed a dual acceleration and obstruction process. It was also found that the movement process and final deposit morphology were strongly influenced by the complex terrain and were sensitive to the surface friction coefficient. This may also be the reason for the survival of some houses in the middle of the slope during the event. This study provides a reference for investigating long-runout, high-speed, flow-like landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

Download references

Funding

This study was financially supported by the Foundation of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Grant No. SKLGP2018Z014), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 41521002), the National Natural Science Foundation of China (Grant No. 41907250), and the National Key Research and Development Project (Grant No. 2019YFC1509602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Xia, X., Su, X. et al. Movement process analysis of the high-speed long-runout Shuicheng landslide over 3-D complex terrain using a depth-averaged numerical model. Landslides 18, 3213–3226 (2021). https://doi.org/10.1007/s10346-021-01695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-021-01695-5

Keywords

Navigation