Skip to main content

Advertisement

Log in

Deep-seated gravitational slope deformations triggered by extreme rainfall and agricultural practices (eastern Michoacan, Mexico)

  • Recent Landslides
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The study of deep-seated gravitational slope deformations (DSGSD) in Mexico is scarce; therefore, their localization and causes are highly overlooked. The present paper examines the characterization of the DSGSD of Jungapeo and Las Pilas in eastern Michoacan state, currently active and endangering their inhabitants. An integrated study, including detailed lithology, morpho-structural inventories, analysis of land use, and pluviometric regime, was performed and complemented with differential global positioning system monitoring networks. Both landslides developed over highly weathered volcano-sedimentary rocks. On the one hand, the Jungapeo landslide has an estimated volume of 990,455 m3 with steady decreasing velocity rates from 41 to 15 cm/month in the first monitoring period to 13–3 cm/month in the last one. On the other hand, the Las Pilas landslide estimated volume is about 1,082,467 m3 with a stable velocity rate of 1.3 to 0.1 cm/month. Despite the multi-storeyed style of activity, two behaviors of instability were distinguished: slow deformation and secondary landslide stages. The conditioning factors for slow deformation in both DSGSD are the combination of weathered lithology with clay- and sand-rich content, and the shift toward intensive monoculture. The triggering factor is related to excess water produced by an inefficient flood-irrigation system that also generates an atypical acceleration behavior in both landslides during the dry season. The DSGSD activity thus predisposes the generation of tension cracks and secondary scarps from which the collateral landslides are triggered by atypical rainfall, such as that of 2010.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aguilar-Garduño E, Santillán H, Salgado M, Martínez M (2010) Análisis técnico de la vulnerabilidad hidrológica ante el crecimiento urbano. Caso de Angangueo, Mich. XXI Congreso Nacional de Hidráulica Zapopan Jalisco

  • Aguirre-Díaz GJ, Jaimes-Viera MC, Nieto-Obregón J (2006) The Valle de Bravo Volcanic Field: Geology and geomorphometric parameters of a Quaternary monogenetic field at the front of the Mexican Volcanic Belt. Geological Society of America Special Paper Penrose Conference Series: 139–154. https://doi.org/10.1130/2006.2402(06)

  • Blatter D, Carmichael I (1998) Plagioclase-free andesites from Zitacuaro (Michoacán), Mexico: petrology and experimental constraints. Contrib Mineral Petrol 132:121–138

    Article  Google Scholar 

  • DeGraff JV, Canuti P (1988) Using isopleth mapping to evaluate landslide activity in relation to agricultural practices. Bull Int Assoc Eng Geol 38:61–71. https://doi.org/10.1007/BF02590449

    Article  Google Scholar 

  • Figueroa-Miranda S (2013) Estudio del peligro por flujos de detritos y corrientes hiperconcentradas mediante Simulación Numérica en Flo-2d, caso de estudio: Angangueo, Mich. MS Thesis, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, Mexico

  • Garduño VH, Corona P, Israde I, Arreygue E, Mennella L, Bigioggero BY, Chiesa S (1999) Carta Geológica del Estado de Michoacán. Secretaría de Difusión Cultural y Extensión Universitaria, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico, scale 1:250000

  • Gorokhovich Y, Doocy S, Walyawula F, Muwanga A, Nardi F (2013) Landslides in Bududa, Eastern Uganda: preliminary assessment and proposed solutions. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice, volume 4: global environmental change. Springer, Berlin, pp 145–149. https://doi.org/10.1007/978-3-642-31337-0_19

    Chapter  Google Scholar 

  • INEGI (2009) Jungapeo, Michoacán de Ocampo. Clave geoestadística 16047. Prontuario de Información Geográfica Municipal de los Estados Unidos Mexicanos

  • INEGI (2010a) Censo de Población y Vivienda 2010 [WWW Document]. URL http://www.beta.inegi.org.mx/proyectos/ccpv/2010/. Accessed 1 Jan 17

  • INEGI (2010b) Norma Técnica de Estándares de Exactitud Posicional [WWW Document]. URL http://www.inegi.org.mx/geo/contenidos/normastecnicas/doc/norma_tecnica_sobre_estandares_de_exactitud_posicional.pdf. Accessed 1 Jan 17

  • Israde-Alcántara I, Martínez L (1986) Contribución al estudio geológico de la transición Pacífico-Tethis en el área de Zitácuaro, Michoacán. BS Thesis, Instituto Politecnico Nacional, Mexico City, Mexico

  • Li T, Zhao J, Li P, Wang F (2013) Failure and motion mechanisms of a rapid loess flowslide triggered by irrigation in the Guanzhong irrigation area, Shaanxi, China. In: Wang F, Miyajima M, Li T, Shan W, Fathani TF (eds) Progress of geo-disaster mitigation technology in Asia. Springer Berlin Heidelberg, Berlin, pp 421–433. https://doi.org/10.1007/978-3-642-29107-4_24

    Chapter  Google Scholar 

  • Mendoza-López MR, Luis-Aguilar A, Castillo-Orta SF, Vidales-Fernández I (2005) Diagnostico del manejo actual del cultivo de guayaba en la region Oriente de Michoacán. Cent Investig del Pacífico, INIFAP 57

  • Muñiz-Jauregui JA, Hernández-Madrigal VM (2012) Zonificación de procesos de remoción en masa en Puerto Vallarta, Jalisco, mediante combinación de análisis multicriterio y método heurístico. Rev Mex Ciencias Geol 29:103–114

    Google Scholar 

  • Pánek T, Klimeš J (2016) Temporal behavior of deep-seated gravitational slope deformations: a review. Earth-Sci Rev 156:14–38. https://doi.org/10.1016/j.earscirev.2016.02.007

    Article  Google Scholar 

  • Pasquarè G, Ferrari L, Garduño-Monroy VH, Tibaldi A, Vezzoli L (1991) Geology of the central sector of the Mexican Volcanic belt, States of Guanajuato and Michoacán. Geol Soc Am Map Chart Ser MCH072 22

  • Ter-Stepanian G (1977) Types of compound and complex landslides. Bull Int Assoc Eng Geol 16:72–74

    Article  Google Scholar 

  • Zhang F, Wang G (2017) Effect of irrigation-induced densification on the post-failure behavior of loess flowslides occurring on the Heifangtai area, Gansu, China. Eng Geol 236:111–118. https://doi.org/10.1016/j.enggeo.2017.07.010

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Comisión Nacional del Agua for providing the data of the meteorological stations. The authors would like to thank the editor and the anonymous reviewers for their accurate comments that highly improved the quality of the manuscript.

Funding

This work is part of PhD project at Instituto Potosino de Investigación Científica y Tecnológica, Mexico, financed through scholarship number 259284 by CONACYT. This research was partially funded by CONACYT project CB-2009-01 and project CIC-UMSNH 2015 and 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Irene Villaseñor-Reyes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villaseñor-Reyes, C.I., Dávila-Harris, P., Hernández-Madrigal, V.M. et al. Deep-seated gravitational slope deformations triggered by extreme rainfall and agricultural practices (eastern Michoacan, Mexico). Landslides 15, 1867–1879 (2018). https://doi.org/10.1007/s10346-018-1031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-018-1031-z

Keywords

Navigation