Skip to main content
Log in

Back analysis of a large landslide in a flysch rock mass

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Flysch is a sedimentary rock consisting of a rhythmic alternation of hard (limestone, sandstone, siltstone) and weak (marl, mudstone, claystone) layers. Because of the presence of layers with different physical properties, the mechanical characterization of heterogeneous rock masses such as flysch is a real challenge. Different methods have been proposed in the literature to characterize flysch, combining empirical classification indexes with laboratory tests. Most of these methods, however, were specifically designed for tunneling and underground excavations, and their applicability to slope stability problems is not yet fully investigated. In this study, we analyze a large landslide in a cretaceous flysch rock in order to compare the mobilized strength at failure with those predicted by the modified GSI method (Marinos and Hoek, 2001). The landslide occurred in the Savena River basin (Northern Apennines of Italy) on April 6, 2013, with a volume of about 3 million m3. Soon after the failure, geological, geotechnical, and geophysical investigations were carried out to detect the failure mechanism and define the landslide geometry. Back analyses of the failed slope were performed using both limit equilibrium and finite difference methods to estimate the in situ strength of the flysch. The results show that the mobilized rock mass cohesion is very low (c ' ≈ 20 ÷ 40 kPa) and that the modified GSI method can predict the in situ strength only assuming a disturbance factor D = 1. Moreover, the analysis shows that the linearization criteria proposed in literature to compute the equivalent Mohr-Coulomb parameters remarkably overestimate the rock mass strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alonso EE, Pinyol N, Puzrin AM (2010) Geomechanics of failures: advanced topics. Springer, Dordrecht; London 277 pp

    Book  Google Scholar 

  • Arbanas Ž, Grošić M, Briški G (2008) Behavior of engineering slopes in flysch rock mass. In: Potvin Y, Carter J, Dyskin A, Jeffrey R (eds) Proceedings of the 1st southern hemisphere international rock mechanics symposium (SHIRMS). Australian Centre for Geomechanics, Perth, pp 493–504

    Google Scholar 

  • Aucelli PC, Casciello E, Cesarano M, Perriello ZS, Rosskopf CM (2013) A deep, stratigraphically and structurally controlled landslide: the case of Mount La Civita (Molise, Italy). Landslides 10:645–656

    Article  Google Scholar 

  • Barton N (2013) Shear strength criteria for rock, rock joints, rock fill and rock masses: problems and some solutions. J Rock Mech Geotech Eng 5:249–261

    Article  Google Scholar 

  • Bouma AH, Brouwer A (1964) Turbidites. In: Developments in sedimentology. Elsevier Publishing Co., Amsterdam 264 pp

    Google Scholar 

  • Berisavljević Z, Berisavljević D, Čebašek V (2015) Shear strength properties of Dimitrovgrad flysch, Southeastern Serbia. Bull Eng Geo Environ 74:759–773

    Article  Google Scholar 

  • Berti M, Martina MLV, Franceschini S, Pignone S, Simoni A, Pizziolo M (2012) Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach. J Geophys Res 117

  • Budetta P, Nappi M (2011) Heterogeneous rock mass classification by means of the geological strength index: the San Mauro formation (Cilento, Italy). Bull Eng Geol Environ 70:585–593

    Article  Google Scholar 

  • Castellaro S, Panzeri R, Mesiti F, Bertello L (2015) A surface seismic approach to liquefaction. Soil Dyn Earthq Eng 77:35–46

    Article  Google Scholar 

  • Cai M, Kaise PK, Tasaka Y, Minami M (2007) Determination of residual strength parameters of jointed rock masses using the GSI system. Int J Rock Mech Min Sci 44:247–265

    Article  Google Scholar 

  • Cano M, Tomás R (2013) Characterization of the instability mechanisms affecting slopes on carbonatic flysch: Alicante (SE Spain), case study. Eng Geol 156:68–91

    Article  Google Scholar 

  • Carter M, Bentley SP (1985) The geometry of slip surfaces beneath landslides: predictions from surface measurements. Can Geotech J 22:234–238

    Article  Google Scholar 

  • Clerici A, Mandrone G, Tellini C, Vescovi P (2002) Simulation of the Ceno R. blockage by the Anzola landslide (Northern Apennines, Italy). Proc. 1° Eur. Conf. on Landslides. Prague 24-26(6):143–148

    Google Scholar 

  • Church HK (1981) Excavation handbook. McGraw-Hill, New York 1024 pp

    Google Scholar 

  • Chowdhury RN, Tang WH, Sidi I (1987) Reliability model of progressive slope failure. Geotechnique 37:467–481

    Article  Google Scholar 

  • Damm B, Terhorst B, Köttritsch E, Ottner F, Mayrhofer M (2008) Zum Einfluss bodenphysikalischer und bodenmechanischer Parameter in quartären Deckschichten auf Massenbewegungen im Wienerwald. Abhandlungen der Geologischen Bundesanstalt 62:33–37

    Google Scholar 

  • Deschamps R, Yankey G (2006) Limitations in the back-analysis of strength from failures. J Geotech Geoenviron 132:532–536

    Article  Google Scholar 

  • Dewitte O, Demoulin A (2005) Morphometry and kinematics of landslides inferred from precise DTMs in West Belgium. Nat Hazards Earth Syst Sci 5:259–265

    Article  Google Scholar 

  • Dugonjić JS, Arbanas Z (2012) Recent landslides on the Istrian Peninsula, Croatia. Nat Hazards 62:1323–1338

    Article  Google Scholar 

  • Duncan M. and Stark T.D. (1992). Soil strengths from back-analysis of slope failures. Proc. Stability and Performance of Slopes and Embankments II, ASCE, GSP 31, 890–904.

  • Geo-Slope International (2014) Stability modeling with SLOPE/W. GEO-SLOPE International Ltd., Calgary

    Google Scholar 

  • Hoek E., Carranza-Torres C., B. Corkum B. (2002). Hoek-Brown failure criterion—2002 edition. Proc NARMS-TAC Conference, Toronto, 1:2e67–273

  • Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34:1165–1186

    Article  Google Scholar 

  • Hoek E, Kaiser PK, Bawden WF (1995) Support of underground excavations in hard rock. AA Balkema, Rotterdam

    Google Scholar 

  • Hradecký J, Pánek T, Klimová R (2007) Landslide complex in the northern part of the Silesian Beskydy Mountains (Czech Republic). Landslides 4:53–62

    Article  Google Scholar 

  • Hudson JA, Harrison JP (1997) Engineering rock mechanics: an introduction to the principles. Pergamon, Tarrytown

    Google Scholar 

  • ISRM (International Society for Rock Mechanics) (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci & Geomech Abstr 15:319–368

  • Itasca (2007) FLAC–fast Lagrangian analysis of continua, version 6 user manual. Itasca Consulting Group, Minneapolis

    Google Scholar 

  • Li AJ, Merifield RS, Lyamin AV (2011) Effect of rock mass disturbance on the stability of rock slopes using the Hoek–Brown failure criterion. Comput Geotech 38:546–558

    Article  Google Scholar 

  • Liang W, Yang C, Zhao Y, Dusseault MB, Liu J (2007) Experimental investigation of mechanical properties of bedded salt rock. Int J Rock Mech Min Sci 44:400–411

    Article  Google Scholar 

  • Marinos P, Hoek E (2001) Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bull Engg Geol Env 60:85–92

    Article  Google Scholar 

  • Marinos V (2014) Tunnel behaviour and support associated with the weak rock masses of flysch. J Rock Mech Geotech Eng 6:227–239

    Article  Google Scholar 

  • Marinos V., Fortsakis P., Prountzopoulos G. (2006). Estimation of rock mass properties of heavily sheared flysch using data from tunneling construction. IAEG 2006, Paper number 314.

  • Mandrone G (2006) Engineering geological mapping of heterogeneous rock masses in the Northern Apennines: an example from the Parma Valley (Italy). Bull Eng Geol Env 65:245–252

    Article  Google Scholar 

  • Mayrhofer M, Ottner F, Terhorst B, Köttritsch E, Damm B (2008) Clay minerals and slope stability of Quaternary sediments in landslide areas of the Wienerwald flysch zone (Vienna Forest/Lower Austria). 4th Mid-European Clay Conf, Mineralogia, Zakopane, pp 111–117

    Google Scholar 

  • Mccann T (2008) The geology of Central Europe, volumes 1 and 2. Volume 1: Precambrian and Palaeozoic; volume 2: Mesozoic and Cenozoic. Bath, Geological Society of London, London

    Google Scholar 

  • Micu M, Bălteanu D (2013) A deep-seated landslide dam in the Siriu Reservoir (Curvature Carpathians, Romania). Landslides 10:323–329

    Article  Google Scholar 

  • Morales T, Uribe-Etxebarria G, Uriarte JA, Fernández de Valderrama I (2004) Geomechanical characterisation of rock masses in Alpine regions: the Basque Arc (Basque-Cantabrian basin, Northern Spain). Eng Geol 71:343–362

    Article  Google Scholar 

  • Morgenstern NR, Price VE (1965) The analysis of the stability of general slip surfaces. Geotechnique 15:79–93

    Article  Google Scholar 

  • Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of Railway Technical Research Institute (RTRI), Kokubunji, p 30

    Google Scholar 

  • Neuhäuser B, Damm B, Terhorst B (2012) GIS-based assessment of landslide susceptibility on the base of the weights-of-evidence model. Landslides 9:511–528

    Article  Google Scholar 

  • Ottner F, Keusch D, Schweigl J (2006) The fate of clay in landslides. Berichte der Deutschen Ton- und Tonmineralgruppe 12:21–25

    Google Scholar 

  • Pánek T, Brázdil R, Klimeš J, Smolková V, Hradecký J, Zahradníček P (2011) Rainfall-induced landslide event of May 2010 in the eastern part of the Czech Republic. Landslides 8:507–516

    Article  Google Scholar 

  • Pedrazzini A, Humair F, Jaboyedoff M, Tonini M (2016) Characterisation and spatial distribution of gravitational slope deformation in the Upper Rhone catchment (Western Swiss Alps). Landslides 13:259–277

    Article  Google Scholar 

  • Pepe G, Piazza M, Cevasco A (2015) Geomechanical characterization of a highly heterogeneous flysch rock mass by means of the GSI method. Bull Eng Geol Environ 74:465–477

    Article  Google Scholar 

  • Petkovšek A, Fazarinc R, Kočevar M, Maček M, Majes B, Mikoš M (2011) The Stogovce landslide in SW Slovenia triggered during the September 2010 extreme rainfall event. Landslides 8:499–506

    Article  Google Scholar 

  • Petley DN, Higuchi T, Petley DJ, Bulmer MH, Carey J (2005) Development of progressive landslide failure in cohesive materials. Geology 33:201–204

    Article  Google Scholar 

  • Pini GA (1999) Tectonosomes and olistostromes in the Argille Scagliose of Northern Apennines, Italy. Geol Soc Am Spec Pap 335 70 pp

  • Pfiffner OA (2014) Geology of the Alps. Wiley-Blackwell, Chichester, West Sussex

    Google Scholar 

  • Potts DM, Kovacevic N, Vaughan PR (1997) Delayed collapse of cut slopes in stiff clay. Géotechnique 47:953–982

    Article  Google Scholar 

  • Reineck HE, Singh IB (2012) Depositional sedimentary environments: with reference to terrigenous clastics. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Ronchetti F, Borgatti L, Cervi F, Gorgoni C, Piccinini L, Vincenzi V, Corsini A (2009) Groundwater processes in a complex landslide, northern Apennines. Italy Nat Hazards Earth Syst Sci 9:895–904

    Article  Google Scholar 

  • Sabatakakis N, Koukis G, Mourtas D (2005) Composite landslides induced by heavy rainfalls in suburban areas: city of Patras and surrounding area, western Greece. Landslides 2:202–211

    Article  Google Scholar 

  • Tacher L, Bonnard C, Laloui L, Parriaux A (2005) Modelling the behaviour of a large landslide with respect to hydrogeological and geomechanical parameter heterogeneity. Landslides 2:3–14

    Article  Google Scholar 

  • Tarchi D, Casagli N, Fanti R, Di Leva D, Luzi G, Pasuto A, Pieraccini M, Silvano S (2003) Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Eng Geol 68:15–30

    Article  Google Scholar 

  • Travelletti J, Malet JP, Samyn K, Grandjean G, Jaboyedoff M (2013) Control of landslide retrogression by discontinuities: evidence by the integration of airborne- and ground-based geophysical information. Landslides 10:37–54

    Article  Google Scholar 

  • Tsutsui K, Rokugawa S, Nakagawa H, Miyazaki S, Cheng C, Shiraishi T, Yang S (2007) Detection and volume estimation of large-scale landslides based on elevation-change analysis using DEMs extracted from high-resolution satellite stereo imagery. IEEE Trans on Geosci Remote Sens 45:1681–1696

  • Tziallas GP, Saroglou H, Tsiambos G (2013) Determination of mechanical properties of flysch using laboratory methods. Eng Geol 166:81–89

    Article  Google Scholar 

  • Vlachopoulos N, Diederichs MS, Marinos V, Marinos P (2013) Tunnel behaviour associated with the weak Alpine rock masses of the Driskos Twin Tunnel system. Egnatia Odos Highway Can Geotech Journal 50:91–120

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Civil Protection Agency of the Emilia-Romagna Region under the framework agreement “Special activities on support to the forecast and emergency planning of Civil Protection with respect to hydrogeological risk” (ASPER-RER, 2011–2015 and 2016–2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Berti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berti, M., Bertello, L., Bernardi, A.R. et al. Back analysis of a large landslide in a flysch rock mass. Landslides 14, 2041–2058 (2017). https://doi.org/10.1007/s10346-017-0852-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-017-0852-5

Keywords

Navigation