Skip to main content

Advertisement

Log in

The variety of landslide forms in Slovenia and its immediate NW surroundings

  • ICL/IPL Activities
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The Post-Forum Study Tour following the 4th World Landslide Forum 2017 in Ljubljana (Slovenia) focuses on the variety of landslide forms in Slovenia and its immediate NW surroundings, and the best-known examples of devastating landslides induced by rainfall or earthquakes. They differ in complexity of the both surrounding area and of the particular geological, structural and geotechnical features. Many of the landslides of the Study Tour are characterized by huge volumes and high velocity at the time of activation or development in the debris flow. In addition, to the damage to buildings, the lives of hundreds of people are also endangered; human casualties occur. On the first day, we will observe complex Pleistocene to recent landslides related to the Mesozoic carbonates thrust over folded and tectonically fractured Tertiary siliciclastic flysch in the Vipava Valley (SW Slovenia), serving as the main passage between the Friulian lowland and central Slovenia, and thus also an important corridor connecting Northern Italy to Central Europe. A combination of unfavourable geological conditions and intense short or prolonged rainfall periods leads to the formation of different types of complex landslides, from large-scale deep-seated rotational and translational slides to shallow landslides, slumps and sediment gravity flows in the form of debris or mudflows. The second day of the study tour will be held in the Soča River Valley located in NW Slovenia close to the border with Italy, where the most catastrophic Stože landslide in Slovenia recently caused the deaths of seven people, and the nearby Strug landslide, which is a combination of rockfall, landslide and debris flow. The final day of the Post-Forum Study Tour will start in the Valcanale Valley located across the border between Slovenia and Italy, severely affected by a debris flow in August 2003. The flow caused the deaths of two people, damaged 260 buildings; large amounts of deposits blocked the A23 Highway, covering both lanes. In Carinthia (Austria), about 25 km west of Villach, the Dobrač/Dobratsch multiple scarps of prehistoric and historic rockslides will be observed. Dobratsch is a massive mountain ridge with a length of 17 km and a width of 6 km, characterized by steep rocky walls. The 3-day study tour will conclude with a presentation of the Potoška planina landslide, a slide whose lower part may eventually generate a debris flow and therefore represents a hazard for the inhabitants and for the infrastructure within or near the village of Koroška Bela.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderle N (1977) Geologische Karte der Republik Österreich 1:50, 000, Blatt 200, Arnoldstein. Geologische Bundesanstalt (Geological Survey of Austria), Vienna

    Google Scholar 

  • Boniello MA, Calligaris C, Lapasin R, Zini L (2010) Rheological investigation and simulation of a debris-flow event in the Fella watershed. Nat Hazards Earth Syst Sci 10:989–997

    Article  Google Scholar 

  • Borga M, Boscolo P, Zanon F, Sangati M (2007) Hydrometeorological analysis of the 29 August 2003 flash flood in the eastern Italian Alps. J Hydrometeorol:1049–1067

  • Brandt A (1981) Die Bergstürze an der Villacher Alpe (Dobratsch), Kärnten/Östereich Untersuchungen zur Ursache und Mechanik der Bergstürze. Ph.D. thesis. University Hamburg, Germany

    Google Scholar 

  • Calligaris C, Zini L, Cucchi F (2012) Debris follow rainfall thresholds in Val Canale Valley: first steps into their redefinition. WIT Trans Eng Sci 73:49–57

    Article  Google Scholar 

  • Četina M, Rajar R, Hojnik T, Zakrajšek M, Krzyk M, Mikoš M (2006) Case study: numerical simulations of debris flow below Stože, Slovenia. J Hydraul Eng 132:121–131

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Shuster RL (eds) Landslides: investigation and mitigation, Transp res board, spec rep, vol 247, pp 36–75

    Google Scholar 

  • Fifer Bizjak K, Zupančič A (2009) Site and laboratory investigation of the Slano blato landslide. Eng Geol 105(3–4):171–185

    Article  Google Scholar 

  • Gosar A, Košták B, Stemberk J, Šebela S (2009) Surface versus underground measurements of active tectonic displacements detected with TM 71 extensometers in Western Slovenia. Acta Carsologica 38(2/3):213–226

    Google Scholar 

  • Hussin HY, Ciurean R, Frigerio S, Marcato G, Calligaris C, Reichenbach P, Van Westen CJ, Glade T (2015) Assessing the effect of mitigation measures on landslide hazard using 2D numerical runout modelling. Landslide Science for a Safer Geoenvironment 2:679–684

    Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor R, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis, contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK & USA

    Google Scholar 

  • Jakob M (2005) A size classification for debris flows. Eng Geol 79(3–4):151–161

    Article  Google Scholar 

  • Jemec Auflič M, Šinigoj J, Krivic M, Podboj M, Peternel T, Komac M (2016) Landslide prediction system for rainfall induced landslides in Slovenia (Masprem) Geologija 59 (2): 259–271, doi: 10.5474/geologija.2016.016

  • Jež J (2007) Reasons and mechanism for soil sliding processes in the Rebrnice area, Vipava valley, SW Slovenia. Geologija 50(1):55–63

    Article  Google Scholar 

  • Jež J, Mikoš M, Trajanova M, Kumelj Š, Budkovič T, Bavec M (2008) Vršaj Koroška Bela – Rezultat katastrofičnih pobočnih dogodkov = Koroška Bela alluvial fan – The result of the catastrophic slope events; (Karavanke Mountains, NW Slovenia). Geologija 51(2):219–227 (in Slovenian with English abstract)

  • Komac M (2005) Statistics of the geological map of Slovenia at scale 1:250.000. Geologija 48:117–126. doi:10.5474/geologija.2005.011

    Article  Google Scholar 

  • Komac M, Ribičič M (2006) Karta verjetnosti pojavljanja plazov v Sloveniji v merilu 1:250.000 = Landslide susceptibility map of Slovenia at scale 1 : 250,000. Geologija 49(2):295–309

  • Komac M, Kumelj Š, Ribičič M (2009) Model dovzetnosti za pojavljanje drobirskih tokov v Sloveniji v merilu 1: 250.000 = Debris-flow susceptibility model of Slovenia at scale 1 : 250,000. Geologija 52(1):87–104 (in Slovenian with English abstract)

  • Komac M, Holly R, Mahapatra P, Van der Marel H, Bavec M (2015) Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides. Landslides 12:241–257

    Article  Google Scholar 

  • Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331

    Article  Google Scholar 

  • Logar J, Fifer Bizjak K, Kočevar M, Mikoš M, Ribičič M, Majes B (2005) History and present state of Slano blato landslide. Nat Hazards Earth Syst Sci 5:447–457

    Article  Google Scholar 

  • Maček M, Majes B, Petkovšek A (2016) Lessons learned from 6 years of suction monitoring of the Slano blato landslide. Rivista Italiana di Geotechnica 1:21–31

    Google Scholar 

  • Majes B, Petkovšek A, Logar J (2002) Primerjava materialnih lastnosti drobirskih tokov iz plazov Stože, Slano blato in Strug = The comparison of material properties of debris flows from Stože, Slano blato and Strug landslides. Geologija 45(2):457–463 (in Slovenian with English abstract)

  • Martín Pérez A, González-Acebrón L, Košir A, Popit T (2016) Sandstone diagenesis, salt-induced weathering and landslide formation: the case of Slano Blato landslide, Slovenia. 32nd IAS International Meeting of Sedimentology, Marrakech

    Google Scholar 

  • Merchel S, Mrak I, Braucher R, Benedetti L, Repe B, Bourlès DL, Reitner JM (2014) Surface exposure dating of the Veliki vrh rock avalanche in Slovenia associated with the 1348 earthquake. Quat Geochronol 22:33–42

    Article  Google Scholar 

  • Mikoš M, Četina M, Brilly M (2004) Hydrologic conditions responsible for triggering the Stože landslide, Slovenia. Eng Geol 73(3–4):193–213

    Google Scholar 

  • Mikoš M, Vidmar A, Brilly M (2005) Using a laser measurement system for monitoring morphological changes on the Strug rock fall, Slovenia. Nat Hazards Earth Syst Sci 5(1):143–153

    Article  Google Scholar 

  • Mikoš M, Brilly M, Fazarinc R, Ribičič M (2006a) Strug landslide in W Slovenia: a complex multi-process phenomenon. Eng Geol 83(1–3):22–35

    Google Scholar 

  • Mikoš M, Fazarinc R, Ribičič M (2006b) Sediment production and delivery from recent large landslides and earthquake-induced rock falls in the Upper Soča River Valey, Slovenia. Eng Geol 86:198–210

    Article  Google Scholar 

  • Mikoš M, Petkovšek A, Majes B (2009) Mechanism of landslides in over-consolidated clays and flysch. Landslides 6:367–371

    Article  Google Scholar 

  • Mikoš M, Jemec Auflič M, Ribičič M, Čarman M, Komac M (2013) Earthquake-induced landslides in Slovenia: historical evidence and present analyses. V: UGAI, Keizo (ur.), YAGI, Hiroshi (ur.), WAKAI, Akihito (ur.). Earthquake-induced landslides. In: Proceedings of the International Symposium on Earthquake-induced Landslides, Kiryu, Japan, 2012. Springer Verlag, Berlin, Germany, pp 225–233

    Google Scholar 

  • Peternel T, Kumelj Š, Oštir K, Komac M (2017) Monitoring the Potoška planina landslide (NW Slovenia) using UAV photogrammetry and tachymetric measurements. Landslides 14(1):395–406. doi:10.1007/s10346-016-0759-6

  • Petkovšek A, Fazarinc R, Kočevar M, Maček M, Majes B, Mikoš M (2011) The Stogovce landslide in SW Slovenia triggered during the September 2010 extreme rainfall event. Landslides 8(4):499–506

    Article  Google Scholar 

  • Placer L (1981) Geološka zgradba jugozahodne Slovenije = Geologic structure of southwestern Slovenia. Geologija 24(1):27–60 (in Slovenian with English abstract)

  • Placer L, Jež J, Atanackov J (2008) Structural aspect on the Slano blato landslide (Slovenia). Geologija 51:229–234 (In Slovenian with English abstract)

  • Popit T, Košir A, Šmuc A (2013) Sedimentological characteristics of quaternary deposits of the Rebrnice slope area (SW Slovenia). V Knjiga sažetka. 3. znanstveni skup Geologija kvartara u Hrvatskoj s međunarodnim sudjelovanjem, Zagreb, 21st–23rd March 2013. Zagreb, HAZU.

  • Popit T, Rožič B, Šmuc A, Kokalj Ž, Verbovšek T, Košir A (2014) A lidar, GIS and basic spatial statistic application for the study of ravine and palaeo-ravine evolution in the upper Vipava valley, SW Slovenia. Geomorphology 204:638–645

    Article  Google Scholar 

  • Pulko B, Majes B, Mikoš M (2014) Reinforced concrete shafts for the structural mitigation of large deep-seated landslides: an experience from the Macesnik and the Slano blato landslides (Slovenia). Landslides 11(1):81–91

    Article  Google Scholar 

  • Ribičič M, Kočevar M (2002)Končna sanacija plazu Slano blato nad Lokavcem pri Ajdovščini = The final remediation of the landslide Slano blato above settlement Lokavec at Ajdovščina. Geologija 45(2):525–530 (In Slovenian with English abstract)

  • Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the alpine orogen. Eclogae Geol Helv 97(1):93–117

    Article  Google Scholar 

  • Till A (1907) Das große Naturereignis von 1348 und die Bergstürze des Dobratsch.- Mitteilungen der k.k. Geographischen Gesellschaft in Wien, Wien10–11; 534–645, Wien.

  • Verbovšek T, Kočevar M, Benko I, Maček M, Petkovšek A (2017a) Monitoring of the Stogovce landslide slope movements with GEASENSE GNSS probes. 4th World Landslide Forum proceedings by Springer Nature publishing, SW Slovenia. In: Mikoš M, Arbanas Ž, Yin Y, Sassa K (eds) Advancing Culture of Living with Landslides. Vol 3: Advances in Landslide Technology, 311-319. doi:10.1007/978-3-319-53487-9_35

  • Verbovšek T, Košir A, Teran M, Zajc M, Popit T (2017b) Volume determination of the Selo landslide complex (SW Slovenia): integrating field mapping, ground penetrating radar and GIS approaches. Landslides. doi:10.1007/s10346-017-0815-x

Download references

Acknowledgments

The authors would like to thank the Slovenian Research Agency, the Ministry of the Environment and Spatial Planning, the Administration for Civil Protection and Disaster Relief, the University of Ljubljana, the Geological Survey of Slovenia and others not directly mentioned in the paper for the support in the form of funding, co-funding and important data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateja Jemec Auflič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jemec Auflič, M., Jež, J., Popit, T. et al. The variety of landslide forms in Slovenia and its immediate NW surroundings. Landslides 14, 1537–1546 (2017). https://doi.org/10.1007/s10346-017-0848-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-017-0848-1

Keywords

Navigation