Skip to main content
Log in

Potential rock fall source areas identification and rock fall propagation in the province of Potenza territory using an empirically distributed approach

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

In this work an overview of the potential rock fall source areas and propagation assessment in the Province of Potenza territory has been presented. The rock fall process is characterized by two steps: the detachment of blocks and subsequently their propagation along the slope. The adopted methodology, used for the first time in the study area, and the software Histofit and FlowR have been very useful tools for the preliminary assessment of rock fall susceptibility at a regional scale, in particular because they have required low data of the study area. Only the DEM may be sufficient together with an appropriate choice of the input parameters and algorithms, that is to say: calculation method, directions algorithm, inertial algorithm and friction loss function. The output of the model is a map of the rock fall source areas, the propagation probabilities and the propagation kinetic energy. The results show that the adopted methodology is successful for the identification of rock fall source areas at a regional scale and the propagation probability obtaining an interesting rock fall susceptibility map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baillifard F, Jaboyedoff M, Sartori M (2003) Rockfall hazard mapping along a mountainous road in Switzerland using a GIS-based parameter rating approach. Nat Hazards Earth Syst Sci 3:435–442

    Article  Google Scholar 

  • Bonardi G, Amore FO, Ciampo G, De Capoa P, Miconnet P, Perrone V (1988) Il complesso liguride auct.: stato delle conoscenze e problemi aperti sulla sua evoluzione pre-appenninica e i suoi rapporti con l’Arco calabro. Mem Soc Geol It 41:17–35

    Google Scholar 

  • Boonklong O, Jaroensutasinee M, Jaroensutasinee K (2007) Computation of D8 Flow Line at Ron Phibun Area, Nakhon Si Thammarat, Thailand–World Accademy of Science, Engineering and Technology. 33

  • Budetta P, Nappi M (2013) Comparison between qualitative rockfall risk rating system for a road affected by high traffic intensity. Nat Hazard Erth Syst. doi:10.5194/nhess-13-1643-2013

    Google Scholar 

  • Bunce CM, Cruden DM, Morgenstern NR (1997) Assessment of the hazard from rock fall on a highway. Can Geotech J 34:344–356

    Article  Google Scholar 

  • Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scale. Eng Geol 102:164–177

    Article  Google Scholar 

  • Conforti M, Pascale S, Pepe F, Sdao F, Sole A (2013) Denudation processes and landforms map of the Camastra River catchment (Basilicata-South Italy). Journal of Maps 9(3):444–455

    Article  Google Scholar 

  • Copons R, Vilaplana JM (2008) Rockfall susceptibility zoning at a large scale: from geomorphological inventory to preliminary land use planning. Eng Geol 102:142–151

    Article  Google Scholar 

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33:260–271

    Article  Google Scholar 

  • Crosta GB, Agliardi F, Frattini P, Imposinato S (2004) A three-dimensional hybrid numerical model for rockfall simulation. Geophys Res Abstr 6:04502

    Google Scholar 

  • D'Ecclesiis G, Grassi D, Sdao F (1995) Espandimenti laterali in corrisponden za di due opposti versanti dei Monti di Maratea (Basilicata). Atti 2° Convegno Internazionale di GeoIdrologia " La cooperazione nella ricerca con i paesi in via di sviluppo e quelli dell'Est Europa". Quaderni di tecniche di Protezione Ambientale. Pitagora Editrice, pp. 1–17

  • Derron MH, Jaboyedoff M, Blikra LH (2005) Preliminary assessment of rockslide and rockfall hazards using a DEM (Oppstadhornet, Norway). Nat Hazards Earth Syst Sci 5:285–292

    Article  Google Scholar 

  • Di Maio C, Vassallo R, Vallario M, Pascale S, Sdao F (2010) Structure and kinematics of a landslide in a complex clayey formation of the Italian southern Apennines. Eng Geol 116:311–322

    Article  Google Scholar 

  • Dorren LKA (2011) Rockyfor 3D (v4.0) revealed – Transparent description of the complete 3D rockfall model. ecorisQ paper, 28

  • Ellen SD (1988) Description and mechanics of soil slip/debris flows in the storm. In: Ellen S.D. & Wieczorek G.F. (Eds.), landslides, floods, and marine effects of the storm of January 3-5, 1982, in the San Francisco Bay region, California. U.S. Geol Surv Prof Pap 1434:63–112

    Google Scholar 

  • Evans S, Hungr O (1993) The assessment of rockfall hazard at the base of talus slopes. Can Geotech J 30:620–636

    Article  Google Scholar 

  • Fairfield J, Leymarie P (1991) Drainage networks from grid digital elevation models, water Resou. Res 27:709–717. doi:10.1029/90WR02658

    Google Scholar 

  • Freeman TG (1991) Calculating catchment area with divergent flow based on a regular grid. Comput Geosci 17(413–422):1991

    Google Scholar 

  • Gamma P (2000) Ein Murgang-Simulationsprogramm zur Gefahrenzonierung. der Universität Bern, Geographisches Institut

    Google Scholar 

  • Grassi D, Merenda L, Sdao F (1992) Esempi di fenomeni gravitativi di diverso tipo nell'Appennino campano-lucano. MEMORIE DELLA SOCIETA' GEOLOGICA ITALIAN A 41:897–904 ISSN: 0375-9857

    Google Scholar 

  • Gullà G, Sdao F (2001) Dissesti prodotti o aggravati dal sisma del 9 settembre 1998 nei territori del confine calabro-lucano. Monografia del Gruppo Nazionale Difesa Catastrofi Idrogeologiche, CNR – 112 pp, Rubbettino Ed. srl, Soveria Mannelli (CZ). Pubbl. n. 2121 del catalogo pubblicazioni del GNDCI, CNR

  • Guzzetti F, Crosta G, Detti R, Agliardi F (2002) STONE: a computer program for three-dimensional simulation of rock-falls. Comput Geosci 28(9):1079–1093

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Wieczorek G (2003) F (2003) Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Nat Hazards Earth Syst Sci 3:491–503

    Article  Google Scholar 

  • Heim A (1932) Bergsturz und Menschenleben. Beiblatt zur Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich (in german)

  • Holmgren P (1994) Multiple flow direction algorithms for runoff modeling in grid based elevation models: an empirical evaluation. Hydrol Process 8:327–334

    Article  Google Scholar 

  • Horton P, Jaboyedoff M, Rudaz B, Zimmermann M (2013) Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Natural Hazard Earth Syst Sci 13:869–885

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167

    Article  Google Scholar 

  • Jaboyedoff M, Labiouse V (2003) Preliminary assessment of rockfall hazard based on GIS data. In: 10th International Congress on Rock Mechanics ISRM 2003 – Technology roadmap for rock mechanism. South Africa Institute of Mining and Metallurgy, Johannesburg, South Africa, 575–578

  • Jaboyedoff M, Labiouse V (2011) Technical note: preliminary estimation of rockfall runout zones. Natural Hazard Earth Syst. Sci. 11:819–828

    Article  Google Scholar 

  • Jaboyedoff M, Choffet Ch, Derron M H, Horton P, Loye A, Longchamp C, Mazotti B, Michoud C, Pedrazzini A (2012) Preliminary Slope Mass Movements Susceptibility Mapping using DEM and LiDAR DEM. In: Terrigenous Mass Movement: Detection, Modelling, Early Warning and Mitigation Using Geoinformation technology. Pradhan B. and Buchroithner M., Springer-Verlag, Berlin Heidelberg, Germany: 109–170. doi:10.1007/978-3-642-25495-6_5

  • Jenson SK, Domingue JO (1988) Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm Eng Rem S 54:1593–1600

    Google Scholar 

  • Lied K (1977) Rockfall problems in Norway. ISMES Publication 90:51–53

    Google Scholar 

  • Losasso L, Pascale S, Sdao F (2016) Rockfall hazard assessment in an area of the “Parco Archeologico Storico-Naturale delle Chiese Rupestri” of Matera (Basilicata southern-Italy). Lect Notes Comput Sci 9789:496–511. doi:10.1007/978-3-319-42089-9 _35

    Article  Google Scholar 

  • Loye A, Jaboyedoff M, Pedrazzini A (2009) Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis. Nat. Hazard Earth Syst Sci 9:1643–1653

    Article  Google Scholar 

  • Mazzoccola DF, Husdon JA (1996) A comprehensive method of rock mass characterization for indicating natural slope instability. Q J Eng Geol Hydroge 29(1):37–56

    Article  Google Scholar 

  • Melchiorre C, Frattini P (2012) Modelling probability of rainfall-induced shallow landslides in a changing climate, Otta, Central Norway. Clim Chang 113(2):413–436

    Article  Google Scholar 

  • O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vision Graph 28:328–344. doi:10.1016/S0734-189X(84)80011-0

    Google Scholar 

  • Onofri R, Candian C (1979) Indagine sui limiti di massima invasione dei blocchi rocciosi franati durante il sisma del Friuli del 1976. Reg. Aut. Friuli-Venezia-Giulia, CLUET, 42

  • Perla R, Cheng T, McClung DM (1980) A two-parameter model of snow-avalanche motion. J Glaciol 26:197–207

    Article  Google Scholar 

  • Quinn P, Beven K, Chevallier P, Planchon O (1991) The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrol Process 5:59–79. doi:10.1002/hyp.3360050106

    Article  Google Scholar 

  • Rouiller J D, Jaboyedoff M, Marro M, Philippossian F, Mamin M (1998) Pentes instables dans le Pennique valaisan. Matterock: une méthodologie d’auscultation des falaises et de detection des éboulements majeurs potentiels. Rapport final du PNR31, VDF hochschulverlag AG, ETH Zurich, Switzerland

  • Sdao F, Simeone V (2007) Mass movements affecting goddess Mefitis sanctuary in Rossano di Vaglio (Basilicata, southern Italy). J Cult Herit 8:77–80. doi:10.1016/j.culher.2006.10.004

    Article  Google Scholar 

  • Skempton AW, DeLory FA (1957) Stability of natural slopes in London clay. In: proc. of the IVth Int. Conf. ISSMFE (Int. Soc. for soil Mech. And found. Eng.). Butterworks, London 2:378–381

    Google Scholar 

  • Strahler AN (1950) Equilibrium theory of erosional slopes approached by frequency distribution analysis. Am J Sci 248(673–696):800–814

    Article  Google Scholar 

  • Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour Res 33:309–319. doi:10.1029/96WR03137

    Article  Google Scholar 

  • van Dijke JJ, van Westen CJ (1990) Rockfall hazard, a geomorphological application of neighborhood analysis with ILWIS, ITC. Journal 1:40–44

    Google Scholar 

  • Varnes DJ (1978) Slope movements and types and processes. Landslides analysis and control. Transportation Research Board Special Report 176:11–33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Losasso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Losasso, L., Jaboyedoff, M. & Sdao, F. Potential rock fall source areas identification and rock fall propagation in the province of Potenza territory using an empirically distributed approach. Landslides 14, 1593–1602 (2017). https://doi.org/10.1007/s10346-017-0807-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-017-0807-x

Keywords

Navigation