Skip to main content

Advertisement

Log in

Effectiveness of visually analyzing LiDAR DTM derivatives for earth and debris slide inventory mapping for statistical susceptibility modeling

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Landslide inventories are the most important data source for landslide process, susceptibility, hazard, and risk analyses. The objective of this study was to identify an effective method for mapping a landslide inventory for a large study area (19,186 km2) from Light Detection and Ranging (LiDAR) digital terrain model (DTM) derivatives. This inventory should in particular be optimized for statistical susceptibility modeling of earth and debris slides. We compared the mapping of a representative set of landslide bodies with polygons (earth and debris slides, earth flows, complex landslides, and areas with slides) and a substantially complete set of earth and debris slide main scarps with points by visual interpretation of LiDAR DTM derivatives. The effectiveness of the two mapping methods was estimated by evaluating the requirements on an inventory used for statistical susceptibility modeling and their fulfillment by our mapped inventories. The resulting landslide inventories improved the knowledge on landslide events in the study area and outlined the heterogeneity of the study area with respect to landslide susceptibility. The obtained effectiveness estimate demonstrated that none of our mapped inventories are perfect for statistical landslide susceptibility modeling. However, opposed to mapping polygons, mapping earth and debris slides with a point in the main scarp were most effective for statistical susceptibility modeling within large study areas. Therefore, earth and debris slides were mapped with points in the main scarp in entire Lower Austria. The advantages, drawbacks, and effectiveness of landslide mapping on the basis of LiDAR DTM derivatives compared to other imagery and techniques were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • Amt der NÖ Landesregierung (2013) Niederösterreich Atlas. http://atlas.noe.gv.at. Accessed 28 Oct 2013

  • Anders NS, Seijmonsbergen H (2008) Laser altimetry and terrain analysis—a revolution in geomorphology. GIM Int 36–39

  • Antonini G, Ardizzone F, Cardinali M, et al. (2002) Surface deposits and landslide inventory map of the area affected by the 1997 Umbria-Marche earthquakes. Boll Soc Geol It Volume speciale n.1:843–853s

  • Ardizzone F, Cardinali M, Carrara A et al (2002) Impact of mapping errors on the reliability of landslide hazard maps. Nat Hazards Earth Syst Sci 2:3–14

    Article  Google Scholar 

  • Ardizzone F, Cardinali M, Galli M, et al (2007) Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Nat Hazards Earth Syst Sci 7:637–650

  • Ardizzone F, Fiorucci F, Santangelo M, et al (2013) Very-high resolution stereoscopic satellite images for landslide mapping. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer Berlin Heidelberg, pp 95–101

  • Atkinson P, Jiskoot H, Massari R, Murray T (1998) Generalized linear modelling in geomorphology. Earth Surf Process Landf 23:1185–1195

    Article  Google Scholar 

  • Barlow J, Franklin S, Martin Y (2006) High spatial resolution satellite imagery, DEM derivatives, and image segmentation for the detection of mass wasting processes. Photogramm Eng Remote Sens 72:687–692

    Article  Google Scholar 

  • Beguería S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards 37:315–329

    Article  Google Scholar 

  • Bell R (2007) Lokale und regionale Gefahren-und Risikoanalyse gravitativer Massenbewegungen an der Schwäbischen Alb. Rheinische Friedrich-Wilhelms-Universität Bonn (available at http://hss.ulb.uni-bonn.de/2007/1107/1107.htm, 29 March 2014)

  • Bell R, Petschko H, Röhrs M, Dix A (2012) Assessment of landslide age, landslide persistence and human impact using airborne laser scanning digital terrain models. Geogr Ann Ser Phys Geogr 94:135–156

    Article  Google Scholar 

  • Booth AM, Roering JJ, Perron JT (2009) Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology 109:132–147

    Article  Google Scholar 

  • Calvello M, Cascini L, Mastroianni S (2013) Landslide zoning over large areas from a sample inventory by means of scale-dependent terrain units. Geomorphology 182:33–48

    Article  Google Scholar 

  • Cardinali M, Guzzetti F, Brabb EE (1990) Preliminary map showing landslide deposits and related features in New Mexico. U.S. Geological Survey Open File Report 90/293, 4 sheets, scale 1:500,000

  • Cardinali M, Ardizzone F, Galli M, et al. (2000) Landslides triggered by rapid snow melting: the December 1996–January 1997 event in Central Italy. In: Claps P, Siccardi F (eds) Proc. 1st Plinius Conf. Bios Publisher, Cosenza, Maratea, pp 439–448

  • Carrara A, Merenda L (1976) Landslide inventory in northern Calabria, southern Italy. Geol Soc Amer Bull 87:1153–1162

    Article  Google Scholar 

  • Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102:164–177

    Article  Google Scholar 

  • Chigira M, Duan F, Yagi H, Furuya T (2004) Using an airborne laser scanner for the identification of shallow landslides and susceptibility assessment in an area of ignimbrite overlain by permeable pyroclastics. Landslides 1:203–209

    Article  Google Scholar 

  • Christman MC (2000) A review of quadrat-based sampling of rare, geographically clustered populations. J Agric Biol Environ Stat 5:168–201

    Article  Google Scholar 

  • Chung CJ, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472

    Article  Google Scholar 

  • Cigna F, Bianchini S, Casagli N (2012) How to assess landslide activity and intensity with persistent scatterer interferometry (PSI): the PSI-based matrix approach. Landslides 10:267–283

    Article  Google Scholar 

  • Colesanti C, Wasowski J (2006) Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng Geol 88:173–199

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides, investigation and mitigation. Transportation Research Board Special Report 247, Washington D.C., pp 36–75

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • Dalyot S, Keinan E, Doytsher Y (2008) Landslide morphology analysis model based on LiDAR and topographic dataset comparison. Surv Land Inf Sci 68:155–170

    Google Scholar 

  • Eisinger U, Gutdeutsch R, Hammerl C (1992) Beiträge zur Erdbebengeschichte von Niederösterreich. Amt der NÖ Landesregierung, Landesamtsdirektion, Wien, pp 154

  • Felicísimo ÁM, Cuartero A, Remondo J, Quirós E (2012) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10:175–189

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C et al (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98

    Article  Google Scholar 

  • Fernández T, Irigaray C, El Hamdouni R, Chacón J (2003) Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa area (Granada, Spain). Nat Hazards 30:297–308

    Article  Google Scholar 

  • Fiorucci F, Cardinali M, Carlà R et al (2011) Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images. Geomorphology 129:59–70

    Article  Google Scholar 

  • Galli M, Ardizzone F, Cardinali M et al (2008) Comparing landslide inventory maps. Geomorphology 94:268–289

    Article  Google Scholar 

  • Ghosh S, van Westen CJ, Carranza EJM et al (2012) Generating event-based landslide maps in a data-scarce Himalayan environment for estimating temporal and magnitude probabilities. Eng Geol 128:49–62

    Article  Google Scholar 

  • Glade T, Anderson MG, Crozier MJ (2005) Landslide hazard and risk. John Wiley & Sons, Ltd, Chichester

    Book  Google Scholar 

  • Glenn NF, Streutker DR, Chadwick DJ et al (2006) Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73:131–148

    Article  Google Scholar 

  • Goetz JN, Bell R, Brenning A (2014) Could surface roughness be a poor proxy for landslide age? Results from the Swabian Alb, Germany. Earth Surf Process Landf 39:1697–1704

    Google Scholar 

  • Guzzetti F, Cardinali M (1989) Carta inventario dei fenomeni franosi della Regione dell'Umbria ed aree limitrofe. CNR, Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche, Publication n. 204, 2 sheets, scale 1:100,000, (in Italian)

  • Guzzetti F (2005) Landslide hazard and risk assessment. Dissertation, Rheinischen Friedrich-Wilhelms-Universität Bonn. (Available at http://hss.ulb.uni-bonn.de/2006/0817/0817.htm, 29 March 2014)

  • Guzzetti F, Cardinali M, Reichenbach P, et al (2004) Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Eng Geol 73:229–245

  • Guzzetti F, Mondini A, Cardinali M et al (2012) Landslide inventory maps: new tools for an old problem. Earth-Sci Rev 112:42–66

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F et al (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184

    Article  Google Scholar 

  • Haneberg WC, Creighton AL, Medley EW, Jonas DA (2005) Use of LiDAR to assess slope hazards at the Lihir gold mine, Papua New Guinea. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Proceedings of International Conference on Landslide Risk Management. Vancouver, Canada

  • Harp EL, Keefer DK, Sato HP, Yagi H (2011) Landslide inventories: the essential part of seismic landslide hazard analyses. Eng Geol 122:9–21

    Article  Google Scholar 

  • Herrera G, Notti D, García-Davalillo JC et al (2010) Analysis with C- and X-band satellite SAR data of the Portalet landslide area. Landslides 8:195–206

    Article  Google Scholar 

  • Hydrographischer Dienst des Landes Niederösterreich (Hydrographic Service of Lower Austria) (2011) Wasserstandsnachrichten und Hochwasserprognosen Niederösterreich. http://www.noel.gv.at/Externeseiten/wasserstand/wiskiwebpublic/maps_N_0.htm?entryparakey=N. Accessed 2 Mar 2011

  • Jaboyedoff M, Oppikofer T, Abellán A et al (2010) Use of LIDAR in landslide investigations: a review. Nat Hazards 61:5–28

    Article  Google Scholar 

  • Krebs CJ (1999) Ecological methodology, 2nd edition. Addison-Wesley Educational Publishers Inc., Benjamin Cummings, Menlo Park, CA

  • Leica Geosystems (2003) ALS50 Airborne Laser Scanner, product description. Atlanta, USA, pp 10

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Process Landf 29:687–711

    Article  Google Scholar 

  • Martha TR, Kerle N, Jetten V et al (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116:24–36

    Article  Google Scholar 

  • Martha TR, Kerle N, van Westen CJ et al (2012) Object-oriented analysis of multi-temporal panchromatic images for creation of historical landslide inventories. ISPRS J Photogramm Remote Sens 67:105–119

    Article  Google Scholar 

  • McCalpin J (1984) Preliminary age classification of landslides for inventory mapping. In: Proceedings 21st annual Engineering Geology and Soils Engineering Symposium, 5-6 April, University of Idaho, Moscow, Idaho, pp 99–111

  • McKenna JP, Lidke DJ, Coe JA (2008) Landslides mapped from LIDAR imagery, Kitsap County, Washington. US Geol Surv Open-File Rep 1292:81

    Google Scholar 

  • Mondini AC, Guzzetti F, Reichenbach P et al (2011) Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sens Environ 115:1743–1757

    Article  Google Scholar 

  • Optech (2008a) ALTM 3100. Optech, Canada, pp 2

  • Optech (2008b) ALTM Gemini. Optech, Canada, pp 2

  • Petschko H, Glade T, Bell R, et al. (2010) Landslide inventories for regional early warning systems. In: Malet J P, Glade T, Casagli N (eds) Proceedings of the International Conference Mountain Risks: Bringing Science to Society’, Firenze, 24–26 November 2010, CERG Editions, Strasbourg, pp 277–282

  • Petschko H, Bell, R., Brenning A, Glade T (2012) Landslide susceptibility modeling with generalized additive models—facing the heterogeneity of large regions. In: Eberhardt E, Froese C, Turner AK, Leroueil S (eds)Taylor & Francis, Banff, Alberta, Canada, pp 769–777

  • Petschko H, Bell R, Leopold P, et al. (2013) Landslide inventories for reliable susceptibility maps in Lower Austria. In: Margottini C, Canuti P, Sassa K (eds) Landslide Science and Practice, Springer, pp 281–286

  • Petschko H, Bell R, Glade T (2014a) Relative age estimation at landslide mapping on LiDAR derivatives: revealing the applicability of land cover data in statistical susceptibility modelling. In: Sassa K, Canuti P, Yin Y (eds) Landslide science for a safer geoenvironment. Springer International Publishing, pp 337-343

  • Petschko H, Brenning A, Bell R et al (2014b) Assessing the quality of landslide susceptibility maps—case study Lower Austria. Nat Hazards Earth Syst Sci 14:95–118

    Article  Google Scholar 

  • Remondo J, González A, De Terán JRD et al (2003) Validation of landslide susceptibility maps; examples and applications from a case study in Northern Spain. Nat Hazards 30:437–449

    Article  Google Scholar 

  • Rib HT, Liang T (1978) Recognition and identification. In: Schuster RL, Krizek RJ (eds) Landslide analysis and control. National Academy of Sciences, Washington, pp 34–80

    Google Scholar 

  • Riegl (2010) LMS-Q560 airborne laser scanner for full waveform analysis. Austria, Japan, USA

  • Santacana N, Baeza B, Corominas J et al (2003) A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet area (Eastern Pyrenees, Spain). Nat Hazards 30:281–295

    Article  Google Scholar 

  • Santangelo M, Cardinali M, Rossi M et al (2010) Remote landslide mapping using a laser rangefinder binocular and GPS. Nat Hazards Earth Syst Sci 10:2539–2546

    Article  Google Scholar 

  • Schnabel W (2002) Geologische Karte von Niederösterreich 1:200,000. Geological Survey of Austria, Vienna

  • Schulz WH (2004) Landslides mapped using LIDAR imagery, Seattle, Washington. US Geol. Surv. Open-File Rep. 1396:11

  • Schweigl J, Hervás J (2009) Landslide mapping in Austria. European Commission Joint Research Centre, Institute for Environment and Sustainability, Italy, pp 65

  • Schwenk H (1992) Massenbewegungen in Niederösterreich 1953–1990. Jahrb. Geol. Bundesanst. Geologische Bundesanstalt, Wien, pp 597–660

  • Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis and zonation. In: Turner AK, Schuster RL (eds) Landslides, investigation and mitigation. National Academy Press, Washington, USA, p 129-177

  • Stumpf A, Malet J-P, Kerle N et al (2013) Image-based mapping of surface fissures for the investigation of landslide dynamics. Geomorphology 186:12–27

    Article  Google Scholar 

  • Tarolli P, Sofia G, Dalla Fontana G (2012) Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion. Nat Hazards 61:65–83

    Article  Google Scholar 

  • Thompson SK (2012) Sampling, 3rd edn. John Wiley & Sons Inc., Hoboken, p 472

    Book  Google Scholar 

  • Tobler D, Riner R, Pfeifer R (2013) Runout modelling of shallow landslides over large areas with SliDepot. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Heidelberg, pp 239–245

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. United Nations Educational, Scientific and Cultural Organization, Paris, France

  • Van Asselen S, Seijmonsbergen AC (2006) Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM. Geomorphology 78:309–320. doi:10.1016/j.geomorph.2006.01.037

    Article  Google Scholar 

  • Van Den Eeckhaut M, Kerle N, Poesen J, Hervás J (2012) Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data. Geomorphology 173–174:30–42

    Article  Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Verstraeten G et al (2007) Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf Process Landf 32:754–769

    Article  Google Scholar 

  • Van Den Eeckhaut M, Vanwalleghem T, Poesen J et al (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410

    Article  Google Scholar 

  • Van Westen CJ, Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65:167–184

    Article  Google Scholar 

  • Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102:112–131

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Terlien MTJ, Soeters R (1997) Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geol Rundsch 86:404–414

    Article  Google Scholar 

  • Ver Hoef J (2002) Sampling and geostatistics for spatial data. Ecoscience 9:152–161

    Google Scholar 

  • Wessely G (2006) Geologie der österreichischen Bundesländer-Niederösterreich. Geological Survey Austria, Vienna

    Google Scholar 

  • Whitworth MCZ, Giles DP, Murphy W (2005) Airborne remote sensing for landslide hazard assessment: a case study on the Jurassic escarpment slopes of Worcestershire, UK. Q J Eng Geol Hydrogeol 38:285–300

    Article  Google Scholar 

  • Wieczorek G (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. G Bull Assoc Engng Geol 21:337–342

    Google Scholar 

Download references

Acknowledgments

This study was carried out within the research project “MoNOE—method development for landslide susceptibility modeling in Lower Austria” funded by the Provincial Government of Lower Austria. The authors are thankful for the provision of data by the Geological Survey of Austria and Lower Austria, the Austrian Service for Torrent and Avalanche Control, and the Provincial Government of Lower Austria. We want to thank the landslide inventory mapping team including Dr. Philip Leopold’s team at the Austrian Institute of Technology and our research assistants Mag. Christine Gassner and Ekrem Canli MSc. for their substantial work mapping landslide points in the province Lower Austria. We are grateful for the improvement of the English writing by Jason Goetz MSc. and for the thorough review and valuable comments from our anonymous reviewers, which helped in improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Petschko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petschko, H., Bell, R. & Glade, T. Effectiveness of visually analyzing LiDAR DTM derivatives for earth and debris slide inventory mapping for statistical susceptibility modeling. Landslides 13, 857–872 (2016). https://doi.org/10.1007/s10346-015-0622-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0622-1

Keywords

Navigation