Skip to main content

Advertisement

Log in

Where do thrushes migrating to France come from? Within-France distribution and temporal changes over 70 years

  • Original Article
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Knowledge of the origin and spatial distribution of migratory bird contingents is essential information for the study and conservation of their populations. In short-distance migratory birds, their propensity to migrate has reduced over the past decades: more individuals remain year-round on the breeding grounds, and those that migrate winter at closer distance. To inform the management of these migratory populations and species subject to intensive hunting during the non-breeding season, we must document and understand how their migratory behaviours have changed over the past decades. Using ringing-recovery data spanning over the past 70 years (1950–2018), we updated knowledge on origins and within-France spatial distribution of five hunted European turdids migrating to/through France (common blackbird, fieldfare, song thrush, redwing and mistle thrush), and documented how these aspects have changed over time. Our results confirm that France hosts non-breeding birds from all Continental Europe. Partial and short-distance migratory populations from blackbird mainly come from western and central Europe and are strongly segregated in autumn and winter in France according to their origin. Surprisingly, our results relativize the presence of populations originating from Fennoscandia for the northernmost species (redwing and fieldfare), which present a slightly marked segregation. Finally, this study highlighted temporal changes in the migratory propensity for song thrush and mistle thrush, and modifications of the within-France spatial distribution for fieldfare, song thrush, and redwing. Through this new knowledge, we hope to provide a replicable method to characterize migratory populations’ distribution and bring elements to promote the differentiated management of hunted thrushes in Europe

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

All the data used for this work will be available in future (Data Paper in preparation).

Code availability

Not applicable.

References

  • Ambrosini R et al (2016) Migratory connectivity and effects of winter temperatures on migratory behaviour of the European robin Erithacus rubecula: a continent-wide analysis. J Anim Ecol 85:749–760. https://doi.org/10.1111/1365-2656.12497

    Article  PubMed  Google Scholar 

  • Andreotti A, Bendini L, Piacentini D, Spina F (2001) Redwing Turdus iliacus migration in Italy: an analysis of ringing recoveries. Ringing Migr 20:312–319

    Article  Google Scholar 

  • Ashmole MJ (1962) The migration of European thrushes: a comparative study based on ringing recoveries. Ibis 104(314–346):522–559

    Google Scholar 

  • Aubry P, Anstett L, Ferrand Y, Reitz F, Klein F, Ruette S, Sarasa M, Arnauduc JP, Migot P (2016) Enquête nationale sur les tableaux de chasse à tir. Saison 2013-2014. Résultats nationaux. Revue Faune Sauvage 310:1–8

  • Berthold P (1996) Control of bird migration. Springer Science & Business Media

  • Both C, Visser ME (2001) Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411:296–298. https://doi.org/10.1038/35077063

    Article  CAS  PubMed  Google Scholar 

  • Bradley NL, Leopold AC, Ross J, Huffaker W (1999) Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci USA 96:9701–9704. https://doi.org/10.1073/pnas.96.17.9701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Maechler M, Bolker BM (2017) glmmTMB Balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal 9:378–400

    Article  Google Scholar 

  • Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519

    Article  Google Scholar 

  • Calenge C, Guillemain M, Gauthier-Clerc M, Simon G (2010) A new exploratory approach to the study of the spatio-temporal distribution of ring recoveries: the example of Teal (Anas crecca) ringed in Camargue, Southern France. J Ornithol 151:945–950

    Article  Google Scholar 

  • Chambolle P (1986) Prélèvement cynégétique de grives en France. Saison 1983–1984. Bulletin Mensuel De L’office National De La Chasse 108:39–42

    Google Scholar 

  • Claessens O (1988) Migration et hivernage en France des grives musiciennes (Turdus philomelos) d’origine étrangère. Gibier Faune Sauvage 5:359–388

    Google Scholar 

  • Claessens O (1990) Hivernage et migration des grives mauvis (Turdus iliacus) en France d’après les reprises d’oiseaux bagués. Gibier Faune Sauvage 7:1–20

    Google Scholar 

  • Claessens O (1991) Influence des vagues de froid sur l’hivernage des grives mauvis (Turdus iliacus) en France: une analyse des reprises de bagues. Alauda 59:43–58

    Google Scholar 

  • Clausen KK, Christensen TK, Gundersen OM, Madsen J (2017) Impact of hunting along the migration corridor of pink-footed geese Anser brachyrhynchus—implications for sustainable harvest management. J Appl Ecol 54:1563–1570

    Article  Google Scholar 

  • Cotton PA (2003) Avian migration phenology and global climate change. Proc Natl Acad Sci USA 100:12219–12222. https://doi.org/10.1073/pnas.1930548100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramp S (1988) Handbook of the birds of Europe, the Middle East and North Africa. The birds of the Western Palearctic, Vol. V: Tyrant flycatchers to thrushes. Oxford University Press, Oxford.

  • da Prato S, da Prato E, Chittenden D (1980) Redwing migration through the British Isles. Ringing Migr 3:9–20

    Article  Google Scholar 

  • du Feu CR, Clark JA, Schaub M, Fiedler W, Baillie SR (2016) The EURING databank—a critical tool for continental scale studies of marked birds. Ringing Migr 31:1–18

    Article  Google Scholar 

  • EBCC, RSPB, BirdLife, Statistics Netherlands (2021). PanEuropean Common Bird Monitoring Scheme. https://pecbms.info/trends-and-indicators/species-trends/species/turdus-liacus/confidential/yes/?search=iliacus . Accessed on 27/04/2021

  • Eraud C, Roux D, Georgeons Y, Rieutort C, Blanchy B, Aubry P (2017) Estimation des tableaux de chasse des grives et du merle noir en France pour la saison 2013–2014. Faune Sauvage 316:12–19

  • Erard C (1967) Sur la présence hivernale en France de Grives litornes Turdus pilaris L. d’origine sibérienne. Alauda 35:20–26

    Google Scholar 

  • European directive (2009) Directive 2009/147/EC on the conservation of wild birds. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32009L0147 Accessed on 8 September 2021

  • Ferrand Y (1988) Quelques précisions sur les prélèvements de grives en France. Bulletin Mensuel de l’Office National de la Chasse 127:10–12

    Google Scholar 

  • Fieberg J, Kochanny CO (2005) Quantifying home-range overlap: the importance of the utilization distribution. J Wildl Manag 69:1346–1359

    Article  Google Scholar 

  • Formánek J (1958) Migration of the Blackbird (Turdus merula) and Song thrush (T. ericetorum) in Czechoslovakia. Sylvia 15:23–41

    Google Scholar 

  • Korner‐Nievergelt K, Liechti F, Thorup K (2014) Ecology and Evolution 4(6) 720-731 https://doi.org/10.1002/ece3.977

  • Gosselin J, Zedrosser A, Swenson JE, Pelletier F (2015) The relative importance of direct and indirect effects of hunting mortality on the population dynamics of brown bears. Proc Biol Sci 282:20141840. https://doi.org/10.1098/rspb.2014.1840

    Article  PubMed  PubMed Central  Google Scholar 

  • Gregory RD et al (2009) An indicator of the impact of climatic change on European bird populations. PLoS ONE 4:e4678. https://doi.org/10.1371/journal.pone.0004678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillemain M, Champagnon J, Massez G, Pernollet CA, George T, Momerency A, Simon G (2015) Becoming more sedentary? Changes in recovery positions of Mallard Anas platyrhynchos ringed in the Camargue, France, over the last 50 years. Wildfowl 65:51–63

    Google Scholar 

  • Guillemain M, Bacon L, Kardynal KJ, Olivier A, Podhrazsky M, Musil P, Hobson KA (2019) Geographic origin of migratory birds based on stable isotope analysis: the case of the greylag goose (Anser anser) wintering in Camargue, southern France. Eur J Wildl Res 65:67. https://doi.org/10.1007/s10344-019-1304-4

    Article  Google Scholar 

  • Guzmán JL, Ferrand Y, Arroyo B (2010) Origin and migration of woodcock Scolopax rusticola wintering in Spain. Eur J Wildl Res 57:647–655. https://doi.org/10.1007/s10344-010-0475-9

    Article  Google Scholar 

  • Hirschfeld A, Attard G (2017) Vogeljagd in Europa – Analyse von Abschusszahlen und Auswirkungen der Jagd auf den Erhalt bedrohter Arte. Ber Zum Vogelschutz 53:15–42

    Google Scholar 

  • Inger R, Gregory R, Duffy JP, Stott I, Voříšek P, Gaston K (2015) Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol Lett 18:28–36. https://doi.org/10.1111/ele.12387

    Article  PubMed  Google Scholar 

  • Jenni L, Kery M (2003) Timing of autumn bird migration under climate change: advances in long-distance migrants, delays in short-distance migrants. Proc Biol Sci 270:1467–1471. https://doi.org/10.1098/rspb.2003.2394

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones PH (1961) Lieux d'origine des Grives de la France méditerranéenne. Oiseau et R.F.O 31:193–213

  • Leach AG, Ward DH, Sedinger JS, Lindberg MS, Boyd WS, Hupp JW, Ritchie RJ (2017) Declining survival of black brant from subarctic and arctic breeding areas. J Wildl Manag 81:1210–1218

    Article  Google Scholar 

  • Maclean IM et al (2008) Climate change causes rapid changes in the distribution and site abundance of birds in winter. Glob Change Biol 14:2489–2500

    Article  Google Scholar 

  • Mazerolle MJ, Mazerolle MMJ (2020) Package “AICcmodavg.”. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). CRAN R Project

  • McCulloch MN, Tucker GM, Baillie SR (1992) The hunting of migratory birds in Europe: a ringing recovery analysis. Ibis 134:55–65

    Article  Google Scholar 

  • Milwright R (1994) Fieldfare Turdus pilaris ringing recoveries during autumn, winter and spring, analysed in relation to river basins and watersheds in Europe and the Near East. Ringing Migr 15:129–189

    Article  Google Scholar 

  • Milwright R (2002) Redwing Turdus iliacus migration and wintering areas as shown by recoveries of birds ringed in the breeding season in Fennoscandia, Poland, the Baltic Republics, Russia, Siberia and Iceland. Ringing Migr 21:5–15

    Article  Google Scholar 

  • Milwright R (2003) Migration routes, breeding areas and between-winter recurrence of nominate redwings Turdus iliacus iliacus revealed by recoveries of winter ringed birds. Ringing Migr 21:183–192

    Article  Google Scholar 

  • Milwright R (2006) Post-breeding dispersal, breeding site fidelity and migration/wintering areas of migratory populations of Song thrush Turdus philomelos in the Western Palearctic. Ringing Migr 23:21–32

    Article  Google Scholar 

  • Moller AP, Flensted-Jensen E, Klarborg K, Mardal W, Nielsen JT (2010) Climate change affects the duration of the reproductive season in birds. J Anim Ecol 79:777–784. https://doi.org/10.1111/j.1365-2656.2010.01677.x

    Article  CAS  PubMed  Google Scholar 

  • Moller AP, Rubolini D, Lehikoinen E (2008) Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc Natl Acad Sci USA 105:16195–16200. https://doi.org/10.1073/pnas.0803825105

    Article  PubMed  PubMed Central  Google Scholar 

  • Németh Z (2017) Partial migration and decreasing migration distance in the Hungarian population of the Common Blackbird (Turdus merula Linnaeus, 1758): analysis of 85 years of ring recovery data. Ornis Hungarica 25:101–108

    Article  Google Scholar 

  • Olioso G (1985) Les espèces du genre Turdus en Provence : analyse des reprises de bagues (1976–1984). Bièvre 7:53–69

    Google Scholar 

  • Osborn TJ, Jones PD (2014) The CRUTEM4 land-surface air temperature data set: construction, previous versions and dissemination via Google Earth. Earth Syst Sci Data 6:61–68. https://doi.org/10.5194/essd-6-61-2014

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918) 37-42 https://doi.org/10.1038/nature01286

  • Peiro V, Candela M (1995) Analyse des prélèvements cynégétiques de grives dans la province d’Alicante (Sud-Est de l’Espagne). Bulletin Mensuel De L’office National De La Chasse 205:22–31

    Google Scholar 

  • Procházka P et al (2017) Delineating large-scale migratory connectivity of reed warblers using integrated multistate models. Divers Distrib 23:27–40

    Article  Google Scholar 

  • Pulido F, Berthold P (2010) Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population. Proc Natl Acad Sci USA 107:7341–7346. https://doi.org/10.1073/pnas.0910361107

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07–0, URL http://www.R-project.org.

  • Rivalan P, Frederiksen M, Lois G, Julliard R (2007) Contrasting responses of migration strategies in two European thrushes to climate change. Glob Change Biol 13:275–287

    Article  Google Scholar 

  • Robinson RA, Baillie SR, Crick HQP (2007) Weather-dependent survival: implications of climate change for passerine population processes. Ibis 149:357–364

    Article  Google Scholar 

  • Robinson RA, Grantham MJ, Clark JA (2009) Declining rates of ring recovery in British birds. Ringing Migr 24:266–272. https://doi.org/10.1080/03078698.2009.9674401

    Article  Google Scholar 

  • Root JT, Terry L, Price KR, Hall SH, Schneider C, Rosenzweig J, Pounds A (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918) 57-60 https://doi.org/10.1038/nature01333

  • Roux D, Boutin JM (2000) Les grives et le merle noir. Enquête nationale sur les tableaux de chasse à tir, saison 1998/1999. Faune Sauvage 251:82–95

    Google Scholar 

  • Santos Martinez T (1982) Migración e invernada de zorzales y mirlos (Género Turdus) en la Península Ibérica. PhD thesis, Universidad Complutense de Madrid, Spain

  • Scebba S (1988) Migration et hivernage du Merle noir (Turdus merula), de la Grive musicienne (Turdus philomelos), de la Grive mauvis (Turdus iliacus) et de la Grive litorne (Turdus pilaris) en Italie et en Corse: synthèse et analyse des reprises. Bulletin Mensuel de l’Office National de la Chasse 127:15–21

    Google Scholar 

  • Schwabl H (1983) Ausprägung und Bedeutung des Teilzugverhaltens einer südwestdeutschen Population der Amsel Turdus merula. J Ornithol 124:101–116

    Article  Google Scholar 

  • Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296. https://doi.org/10.1126/science.1071281

    Article  CAS  PubMed  Google Scholar 

  • Thonnerieux Y (1981) Migration et hivernage dans la région Rhône-Alpes des espèces appartenant au genre Turdus: synthèse et analyse des reprises de bagues (1976–1984). Bièvre 3:1–54

    Google Scholar 

  • Thorup K, Korner-Nievergelt F, Cohen EB, Baillie SR (2014) Large-scale spatial analysis of ringing and re-encounter data to infer movement patterns: a review including methodological perspectives. Methods Ecol Evol 5:1337–1350. https://doi.org/10.1111/2041-210X.12258

    Article  Google Scholar 

  • Van Vliet J, Musters C, Ter Keurs WJ (2009) Changes in migration behaviour of blackbirds Turdus merula from the Netherlands. Bird Study 56:276–281

    Article  Google Scholar 

  • Visser ME, Perdeck AC, van Balen JH, Both C (2009) Climate change leads to decreasing bird migration distances. Glob Change Biol 15:1859–1865

    Article  Google Scholar 

  • Walther GR et al (2002) Ecological responses to recent climate change. Nature 416:389–395. https://doi.org/10.1038/416389a

    Article  CAS  PubMed  Google Scholar 

  • Webster MS, Marra PP (2005) The importance of understanding migratory connectivity and seasonal interactions. in Greenberg R, Marra PP, Birds of Two Worlds: The Ecology and Evolution of Temperate-Tropical Migration, 199–209. Johns Hopkins University Press, USA.

Download references

Acknowledgements

We thank the thousands of bird ringers, citizens, and hunters that voluntarily collected the data, as well as the national ringing schemes that have provided access to grand totals of ringed birds for their country (Table S1, see https://euring.org/national-schemes).

Funding

This study was supported by the Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Office Français de la Biodiversité, and Ministère de l’Environnement. We thank Jocelyn Champagnon (Tour du Valat) for providing access to unpublished ringing data from Camargue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Lahournat.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1427 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahournat, M., Jiguet, F., Villers, A. et al. Where do thrushes migrating to France come from? Within-France distribution and temporal changes over 70 years. Eur J Wildl Res 67, 95 (2021). https://doi.org/10.1007/s10344-021-01525-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10344-021-01525-y

Keywords

Navigation