Skip to main content

Advertisement

Log in

Non-invasive monitoring of the European wildcat (Felis silvestris silvestris Schreber, 1777): comparative analysis of three different monitoring techniques and evaluation of their integration

  • Original Paper
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

The European wildcat is threatened by habitat fragmentation, illegal or incidental killings and hybridization with free-ranging domestic cats. Conservation projects should be based on a sound knowledge of the patterns of wildcat distribution, population size and dynamics. However, this information is scanty, mainly because of the species’ elusive behaviour. In this study, we tested the efficiency of a protocol that integrates the use of non-invasive genetic identifications and camera trapping for wildcat monitoring. The field work was carried out in the Foreste Casentinesi National Park, a protected area in the central Italian Apennines, where wildcat presence has been recently ascertained. DNA samples were extracted from scats collected during the survey and hair tufts trapped by valerian-treated sticks. Individual genotypes were identified using 10 autosomal microsatellites, mtDNA and Y chromosome markers. Additionally, we obtained 30-s long video clips from 20 camera trap stations associated to the hair traps. Our results confirmed the presence of wildcats in the study area. We identified six to nine wildcat individuals (respectively from non-invasive genetic sampling and camera trapping survey). Some of these showed anomalous coat colour patterns (one) or genetic signatures of hybridization (three). We further identified five domestic cats that were sharing parts of wildcats’ territories. We found individual variations in the response to valerian lure. We compared and evaluated the pros and cons of these monitoring methods. We concluded that, if used simultaneously, these methods may considerably increase the efficiency of wildcat detection and the quality of collected data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agostini N, Bottacci A, D’Amico C, Fabbri M, Mencucci M, Ragni B, Randi E, Tedaldi G (2010) il gatto selvatico nel Parco Nazionale delle Foreste Casentinesi. In: Randi E et al. (eds) atti del convegno Santa Sofia (FC) 7–8 Novembre 2008. Ente Parco Nazionale Foreste Casentinesi, pp 87–88

  • Angelici FM, Genovesi P (2003) Felis silvestris (Schreber, 1777). In: Boitani L, Lovari S, Vigna Taglianti A (eds.) Fauna d’Italia. Mammalia III. Carnivora - Artiodactyla. Calderini, Bologna, pp. 207–221

  • Anile S, Amico C, Ragni B (2012a) Population density estimation of the European wildcat (Felis silvestris silvestris) in Sicily using camera trapping. Wildl Biol Pract 8:1–12

    Article  Google Scholar 

  • Anile S, Arrabito C, Mazzamuto MV, Scornavacca D, Ragni B (2012b) A non-invasive monitoring on European wildcat (Felis silvestris silvestris Schreber, 1777) in Sicily using hair trapping and camera trapping: does scented lure work? Hystrix Ital J Mammal 23:45–50. doi:10.4404/hystrix-23.2-4657

    Google Scholar 

  • Anile S, Ragni B, Randi E, Mattucci F, Rovero F (2014) Wildcat population density on the Etna volcano, Italy: a comparison of density estimation methods. J Zool 293:252–261. doi:10.1111/jzo.12141

    Article  Google Scholar 

  • Balestrieri A, Remonti L, Frantz AC, Capelli E, Zenato M, Dettori EE, Guidali F, Prigioni C (2010) Efficacy of passive hair-traps for the genetic sampling of a low-density badger population. Hystr Ital J Mammal 21:137–146

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

  • Bizzarri L, Lacrimini M, Ragni B (2010a) Live capture and handling of the European wildcat in central Italy. Hystr Ital J Mammal 21:73–82

    Google Scholar 

  • Bizzarri L, Capelletti P, Lacrimini M, Mariani M, Ragni B (2010b) A radio-telemetry study of the European wildcat in an area of the Umbrian Apennines. In: Randi E et al. (eds) atti del convegno Santa Sofia (FC) 7–8 Novembre 2008. Ente Parco Nazionale Foreste Casentinesi, pp 67–70

  • Bologna MA, Cristiani G (2012) Contributo alla teriofauna dell’Alta Val Tanaro, Alpi Liguri (CN-IM). Riv Piemont Stor Nat 33:295–319

    Google Scholar 

  • Bradshaw JWS (1992) The behaviour of the domestic cat. C.A.B...I. International UK. BTO

  • Broquet T, Menard N, Petit E (2007) Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conserv Genet 8:249–260. doi:10.1007/s10592-006-9146-5

    Article  Google Scholar 

  • Cagnolaro L, Rosso D, Spagnesi M (1976) Inchiesta sulla distribuzione del Gatto selvatico (Felis silvestris Schreber) in Italia e nei Canton Ticino e Grigioni (Svizzera) e del Gatto selvatico sardo (Felis lyblca sarda Lataste) in Sardegna con notizie sulla Lince (Lynx lynx L.) 1971–1973. Ric Biol Selvag 64:1–109

    Google Scholar 

  • Can OE, Kandemir I, Togan I (2011) The wildcat Felis silvestris in northern Turkey: assessment of status using camera trapping. Oryx 45:112–118. doi:10.1017/s0030605310001328

    Article  Google Scholar 

  • Caniglia R, Fabbri E, Cubaynes S, Gimenez O, Lebreton J-D, Randi E (2012) An improved procedure to estimate wolf abundance using non-invasive genetic sampling and capture-recapture mixture models. Conserv Genet 13:53–64. doi:10.1007/s10592-011-0266-1

    Article  Google Scholar 

  • Comer CE, Symmank ME, Kroll JC (2011) Bobcats exhibit low detection rates at hair collection stations in East Texas. Wildl Biol Pract 7:116–122. doi:10.2461/wbp.2011.7

    Article  Google Scholar 

  • Corbett LK (1979) Feeding ecology and social organization of wildcats (Felis silvestris) and domestic cats (Felis catus) in Scotland. Ph.D. dissertation. University of Aberdeen, Aberdeen

  • Council of Europe (1993) Seminar on the biology and conservation of the wildcat (Felis silvestris). Council of Europe, Strasbourg

  • DeMatteo KE et al (2014) Using detection dogs and genetic analyses of scat to expand knowledge and assist felid conservation in Misiones, Argentina. Integr Zool 9:623–639. doi:10.1111/1749-4877.12113

    Article  PubMed  Google Scholar 

  • Driscoll C, Nowell K (2010) Felis silvestris. The IUCN Red List of Threatened Species. Version 2014.2. http://www.iucnredlist.org/details/8543/0. Accessed on 07 August 2014

  • Driscoll CA, Menotti-Raymond M, Roca AL, Hupe K, Johnson WE, Geffen E, Harley EH, Delibes M, Pontier D, Kitchener AC, Yamaguchi N, O’Brien SJ, Macdonald DW (2007) The Near Eastern origin of cat domestication. Science 317:519–523. doi:10.1126/science.1139518

  • Driscoll C, Yamaguchi N, O’Brien SJ, Macdonald DW (2011) A suite of genetic markers useful in assessing wildcat (Felis silvestris ssp.)—domestic cat (Felis silvestris catus) admixture. J Hered 102:S87–S90. doi:10.1093/jhered/esr047

    Article  PubMed Central  PubMed  Google Scholar 

  • Easterbee N, Hepburn LV, Jefferies DJ (1991) Survey of the status and distribution of the wildcat in Scotland, 1983–1987. Nature Conservancy Council for Scotland, Edinburgh

  • Eckert I, Suchentrunk F, Markov G, Hartl GB (2010) Genetic diversity and integrity of German wildcat (Felis silvestris) populations as revealed by microsatellites, allozymes, and mitochondrial DNA sequences. Mamm Biol 75:160–174. doi:10.1016/j.mambio.2009.07.005

    Google Scholar 

  • Ellis SLH, Wells DL (2010) The influence of olfactory stimulation on the behaviour of cats housed in a rescue shelter. Appl Anim Behav Sci 123:56–62. doi:10.1016/j.applanim.2009.12.011

    Article  Google Scholar 

  • Foster RJ, Harmsen BJ (2012) A critique of density estimation from camera-trap data. J Wildl Manage 76:224–236. doi:10.1002/jwmg.275

    Article  Google Scholar 

  • Freeman AR, MacHugh DE, McKeown S, Walzer C, McConnell DJ, Bradley DG (2001) Sequence variation in the mitochondrial DNA control region of wild African cheetahs (Acinonyx jubatus). Heredity 86:355–362. doi:10.1046/j.1365-2540.2001.00840.x

    Article  CAS  PubMed  Google Scholar 

  • French DD, Corbett LK, Easterbee N (1988) Morphological discriminants of Scottish wildcats Felis silvestris, domestic cats F. catus and their hybrids. J Zool Soc Lond 214:235–259

    Article  Google Scholar 

  • Galaverni M, Palumbo D, Fabbri E, Caniglia R, Greco C, Randi E (2012) Monitoring wolves (Canis lupus) by non-invasive genetics and camera trapping: a small-scale pilot study. Eur J Wildl Res 58:47–48

    Article  Google Scholar 

  • Garcia-Alaniz N, Naranjo EJ, Mallory FF (2010) Hair-snares: a non-invasive method for monitoring felid populations in the Selva Lacandona, Mexico. Trop Conserv Sci 3:403–411

    Google Scholar 

  • Hartmann SA, Steyer K, Kraus RHS, Segelbacher G, Nowak C (2013) Potential barriers to gene flow in the endangered European wildcat (Felis silvestris). Conserv Genet 14:413–426. doi:10.1007/s10592-013-0468-9

    Article  Google Scholar 

  • Hertwig ST, Schweizer M, Stepanow S, Jungnickel A, Boehle UR, Fischer MS (2009) Regionally high rates of hybridization and introgression in German wildcat populations (Felis silvestris, Carnivora, Felidae). J Zool Syst Evol Res 47:283–297. doi:10.1111/j.1439-0469.2009.00536.x

    Article  Google Scholar 

  • Hupe K, Simon O (2007) Die Lockstockmethode-eine nicht invasive Methode zum Nachweis der Europäischen Wildkatze (Fels silvestris silvestris). Informat Natursch Niedersach 27:66–69

    Google Scholar 

  • Karanth KU, Nichols JD (2002) Monitoring tigers and their prey: a manual for researchers, managers and conservationists in tropical Asia. Centre for Wildlife Studies, Bangalore, India

  • Kéry M, Gardner B, Stoeckle T, Weber D, Royle JA (2011) Use of spatial capture-recapture modeling and DNA data to estimate densities of elusive animals. Conserv Biol 25:356–364. doi:10.1111/j.1523-1739.2010.01616.x

    PubMed  Google Scholar 

  • Kilshaw K, Macdonald DW (2011) The use of camera trapping as a method to survey for the Scottish wildcat. Scott Nat Herit Commissioned Rep 479:1–32

    Google Scholar 

  • Klar N, Fernandez N, Kramer-Schadt S, Herrmann M, Trinzen M, Buettner I, Niemitz C (2008) Habitat selection models for European wildcat conservation. Biol Conserv 141:308–319. doi:10.1016/j.biocon.2007.10.004

    Article  Google Scholar 

  • Klar N, Herrmann M, Kramer-Schadt S (2009) Effects and mitigation of road impacts on individual movement behavior of wildcats. J Wildl Managem 73:631–638. doi:10.2193/2007-574

    Article  Google Scholar 

  • Klar N, Herrmann M, Henning-Hahn M, Pott-Doerfer B, Hofer H, Kramer-Schadt S (2012) Between ecological theory and planning practice: (re-) connecting forest patches for the wildcat in Lower Saxony, Germany. Landsc Urban Plan 105:376–384. doi:10.1016/j.landurbplan.2012.01.007

    Article  Google Scholar 

  • Krone O, Guminsky O, Meinig H, Herrmann M, Trinzen M, Wibbelt G (2008) Endoparasite spectrum of wild cats (Felis silvestris Schreber, 1777) and domestic cats (Felis catus L.) from the Eifel, Pfalz region and Saarland, Germany. Eur J Wildl Res 54:95–100. doi:10.1007/s10344-007-0116-0

    Article  Google Scholar 

  • Lecis R, Pierpaoli M, Birò Z, Szemethy L, Ragni B, Vercillo F, Randi E (2006) Bayesian analyses of admixture in wild and domestic cats (Felis silvestris) using linked microsatellite loci. Mol Ecol 15:119–131

    Article  CAS  PubMed  Google Scholar 

  • Long RA, Donovan TM, Mackay P, Zielinski WJ, Buzas JS (2007) Comparing scat detection dogs, cameras, and hair snares for surveying carnivores. J Wildl Managem 71:2018–2025. doi:10.2193/2006-292

    Article  Google Scholar 

  • Lopez JV, Cevario S, O’Brien SJ (1996) Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics 33:229–246

    Article  CAS  PubMed  Google Scholar 

  • Lozano J (2010) Habitat use by European wildcats (Felis silvestris) in central Spain: what is the relative importance of forest variables? Anim Biodiv Conserv 33:143–150

    Google Scholar 

  • Lozano J, Malo AF (2012) Conservation of European wildcat (Felis silvestris) in Mediterranean environments: a reassessment of current threats. In: Williams GS (ed) Mediterranean ecosystems: dynamics, management and conservation. Nova Science Publishers, Hauppauge, NY, pp 1–31

    Google Scholar 

  • Lozano J, Urra F (2007) El gato doméstico, Felis silvestris catus. Galemys 19:35–38

    Google Scholar 

  • Lozano J, Virgos E, Malo AF, Huertas DL, Casanovas JG (2003) Importance of scrub-pastureland mosaics for wild-living cats occurrence in a Mediterranean area: implications for the conservation of the wildcat (Felis silvestris). Biodiv Conserv 12:921–935. doi:10.1023/a:1022821708594

    Article  Google Scholar 

  • Lozano J, Virgos E, Cabezas-Diaz S, Mangas JG (2007) Increase of large game species in Mediterranean areas: is the European wildcat (Felis silvestris) facing a new threat? Biol Conserv 138:321–329

    Article  Google Scholar 

  • Lozano J, Virgos E, Cabezas-Diaz S (2013) Monitoring European wildcat Felis silvestris populations using scat surveys in central Spain: are population trends related to wild rabbit dynamics or to landscape features? Zool Stud 52 doi:10.1186/1810-522x-52-16

  • Luo S-J et al (2007) Development of Y chromosome intraspecific polymorphic markers in the Felidae. J Hered 98:400–413. doi:10.1093/jhered/esm063

    Article  CAS  PubMed  Google Scholar 

  • Lüps P, Flückiger PF, Peier D, Schmidt P (2002) Fund einer Waldkatze Felis silvestris bei Oberbuchsiten. Mitt Nat forsch Ges Kanton Solothurn 39:41–45

    Google Scholar 

  • Mattucci F, Oliveira R, Bizzarri L, Vercillo F, Anile S, Ragni B, Lapini L, Sforzi A, Alves PC, Lyons LA, Randi E (2013) Genetic structure of wildcat (Felis silvestris) populations in Italy. Ecol Evol 3:2443–2458. doi:10.1002/ece3.569

    Article  Google Scholar 

  • McNevin D, Wilson-Wilde L, Robertson J, Kyd J, Lennard C (2005) Short tandem repeat (STR) genotyping of keratinised hair—part 2. An optimised genomic DNA extraction procedure reveals donor dependence of STR profiles. Forensic Sci Int 153:247–259. doi:10.1016/j.forsciint.2005.05.005

    Article  CAS  PubMed  Google Scholar 

  • Menotti-Raymond MA, Obrien SJ (1995) Evolutionary conservation of 10 microsatellite loci in 4 species of Felidae. J Hered 86:319–322

    CAS  PubMed  Google Scholar 

  • Menotti-Raymond M, David VA, Stephens JC, Lyons LA, Obrien SJ (1997) Genetic individualization of domestic cats using feline STR loci for forensic applications. J Forensic Sci 42:1039–1051

    Article  CAS  PubMed  Google Scholar 

  • Miller CR, Joyce P, Waits LP (2002) Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160:357–366

    PubMed Central  PubMed  Google Scholar 

  • Mills LS, Citta JJ, Lair KP, Schwartz MK, Tallmon DA (2000) Estimating animal abundance using noninvasive DNA sampling: promise and pitfalls. Ecol Appl 10:283–294. doi:10.2307/2641002

    Article  Google Scholar 

  • Monterroso P, Brito JC, Ferreras P, Alves PC (2009) Spatial ecology of the European wildcat in a Mediterranean ecosystem: dealing with small radio-tracking datasets in species conservation. J Zool 279:27–35. doi:10.1111/j.1469-7998.2009.00585.x

    Article  Google Scholar 

  • Monterroso P, Alves PC, Ferreras P (2011) Evaluation of attractants for non-invasive studies of Iberian carnivore communities. Wildl Res 38:446–454. doi:10.1071/wr11060

    Article  Google Scholar 

  • Monterroso P, Castro D, Silva TL, Ferreras P, Godinho R, Alves PC (2013) Factors affecting the (in)accuracy of mammalian mesocarnivore scat identification in South-western Europe. J Zool 289:243–250. doi:10.1111/jzo.12000

    Article  Google Scholar 

  • Monterroso P, Rich LN, Serronha A, Ferreras P, Alves PC (2014) Efficiency of hair snares and camera traps to survey mesocarnivore populations. Eur J Wildl Res 60:279–289

    Article  Google Scholar 

  • Nowell K, Jackson P (1996) Wild cats. Status survey and conservation action plan. IUCN/SSC Cat Specialist Group, Gland, Switzerland and Cambridge, UK

  • Nussberger B, Greminger MP, Grossen C, Keller LF, Wandeler P (2013) Development of SNP markers identifying European wildcats, domestic cats, and their admixed progeny. Mol Ecol Resour 13:447–460. doi:10.1111/1755-0998.12075

    Article  CAS  PubMed  Google Scholar 

  • O’Brien J, Devillard S, Say L, Vanthomme H, Leger F, Ruette S, Pontier D (2009) Preserving genetic integrity in a hybridising world: are European wildcats (Felis silvestris silvestris) in eastern France distinct from sympatric feral domestic cats? Biodiv Conserv 18:2351–2360. doi:10.1007/s10531-009-9592-8

    Article  Google Scholar 

  • O’Connell AF, Nichols JD, Karanth KU (2011) Camera traps in animal ecology. Methods Anal Springer. doi:10.1007/978-4-431-99495-4_14

    Google Scholar 

  • Oliveira R, Godinho R, Randi E, Ferrand N, Alves PC (2008a) Molecular analysis of hybridisation between wild and domestic cats (Felis silvestris) in Portugal: implications for conservation. Conserv Genet 9:1–11. doi:10.1007/s10592-007-9297-z

    Article  Google Scholar 

  • Oliveira R, Godinho R, Randi E, Alves PC (2008b) Hybridization versus conservation: are domestic cats threatening the genetic integrity of wildcats (Felis silvestris silvestris) in Iberian Peninsula? Phil Trans R Soc B 363:2953–2961. doi:10.1098/rstb.2008.0052

    Article  PubMed Central  PubMed  Google Scholar 

  • Otis DL, Burnham KP, Anderson DR, White GC (1978) Statistical inference from capture data on closed animal populations. Wildl Monogr:1–135

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. doi:10.1093/bioinformatics/bts460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pierpaoli M, Birò ZS, Herrmann M, Hupe K, Fernandes M, Ragni B, Szemethy L, Randi E (2003) Genetic distinction of wildcat (Felis silvestris) populations in Europe, and hybridization with domestic cats in Hungary. Mol Ecol 12:2585–2598. doi:10.1046/j.1365-294X.2003.01939.x

    Article  CAS  PubMed  Google Scholar 

  • Polzin T, Daneschmand SV (2003) On Steiner trees and minimum spanning trees in hypergraphs. Oper Res Lett 31:12–20

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ragni B (1981) Gatto selvatico. Felis silvestris Schreber, 1777. In: Distribuzione e biologia di 22 specie di Mammiferi in Italia. C.N.R., Roma: 105–113

  • Ragni B (2003) L’areale italiano del gatto selvatico Europeo (Felis silvestris silvestris): ancora un dilemma? Hystrix, supp. IV Congr. It. Teriologia PP:67

  • Ragni B, Petruzzi E (2010) Recent situation of the Old World wildcat (Felis silvestris Schreber, 1777) and Eurasian lynx (Lynx lynx Linnaeus, 1758) in the Apennines. In: Randi E et al. (eds) atti del convegno Santa Sofia (FC) 7–8 Novembre 2008. Ente Parco Nazionale Foreste Casentinesi pp 36–46

  • Ragni B, Possenti M (1996) Variability of coat-colour and markings system in Felis silvestris. Ital J Zool 63:285–292

    Article  Google Scholar 

  • Ragni B, Possenti M, Sforzi A, Zavalloni D, Ciani F (1994) The wildcat in central-northern Italian peninsula: a biogeographical dilemma. Biogeographia 17:553–566

    Google Scholar 

  • Ragni B, Lucchesi M, Tedaldi G, Vercillo F, Fazzi P, Bottacci A, Quilghini G (2014). Il gatto selvatico Europeo nelle Riserve Naturali Casentinesi. Corpo Forestale dello Stato, UTB Pratovecchio

  • Randi E (2008) Detecting hybridization between wild species and their domesticated relatives. Mol Ecol 17:285–293. doi:10.1111/j.1365-294X.2007.03417.x

    Article  PubMed  Google Scholar 

  • Randi E, Pierpaoli M, Beaumont M, Ragni B, Sforzi A (2001) Genetic identification of wild and domestic cats (Felis silvestris) and their hybrids using Bayesian clustering methods. Mol Biol Evol 18:1679–1693

    Article  CAS  PubMed  Google Scholar 

  • Rondinini C, Battistoni A, Peronace V, Teofili C (2013) Lista Rossa IUCN dei Vertebrati Italiani. Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Roma. p 51

  • Ruell EW, Crooks KR (2007) Evaluation of noninvasive genetic sampling methods for felid and canid populations. J Wildl Managem 71:1690–1694

    Article  Google Scholar 

  • Ruiz-González A, Madeira MJ, Randi E, Urra F, Gómez-Moliner BJ (2013) Non-invasive genetic sampling of sympatric marten species (Martes martes and Martes foina): assessing species and individual identification success rates on faecal DNA genotyping. Eur J Wildl Res 59:371–386

    Article  Google Scholar 

  • Santolini R, Giuliani A, Tedaldi G, Morelli F, Ricci L, Moretti E, Savini C; (2010) Il gatto selvatico nell’appennino a nord dell’areale storico: analisi dell’offerta ambientale (dati preliminari) e indirizzi di conservazione. In: Randi E et al. (eds) atti del convegno Santa Sofia (FC) 7–8 Novembre 2008. Ente Parco Nazionale Foreste Casentinesi pp 83–86

  • Schulenberg J (2005) Säugetiere (Mammalia). In: A. Gunther, U. Nigmann, R. Achtziger (ed.) Analyse der Gefährdungsursachen von planungsrelevanten Tiergruppen in Deutschland zur Ergänzung der bestehenden Roten Listen gefährdeter Tiere. Schriftenr. Biol Vielfalt, BfN, Bonn-Bad Godesberg pp. 70–112

  • Silveira L, Jacomo ATA, Diniz JAF (2003) Camera trap, line transect census and track surveys: a comparative evaluation. Biol Conserv 114:351–355

    Article  Google Scholar 

  • Stahl P, Artois M (1994) Status and conservation of the wildcat (Felis silvestris) in Europe and around the Mediterranean rim. Convention on the Conservation of European Wildlife and Natural Habitats Standing Committee. Council Eur Nat Environ Ser 69:1–76

    Google Scholar 

  • Steyer K, Simon O, Kraus RHS, Haase P, Nowak C (2013) Hair trapping with valerian-treated lure sticks as a tool for genetic wildcat monitoring in low-density habitats. Eur J Wildl Res 59:39–46. doi:10.1007/s10344-012-0644-0

    Article  Google Scholar 

  • Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327

    Article  PubMed  Google Scholar 

  • Tedaldi G (2012) Rilevazione della presenza del gatto selvatico (Felis silvestris silvestris) in due siti di rete natura 2000 nella provincia di Bologna. Provincia di Bologna

  • Tiedemann R, Harder J, Gmeiner C, Haase E (1996) Mitochondrial DNA sequence patterns of harbour porpoises (Phocoena phocoena) from the North and the Baltic sea. Z Säugetierk 61:104–111

    Google Scholar 

  • Vogel B, Mölich T (2013) Best practices for implementing biotope networks in highly fragmented landscapes: the safety net for the European wildcat. In: Proceedings of the 2013 International Conference on Ecology and Transportation (ICOET 2013)

  • Waits LP, Paetkau D (2005) Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J Wildl Managem 69:1419–1433. doi:10.2193/0022-541x(2005)69[1419:ngstfw]2.0.co;2

    Article  Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256. doi:10.1046/j.1365-294X.2001.01185.x

    Article  CAS  PubMed  Google Scholar 

  • Weber D, Stoeckle TM, Roth T (2008) Entwicklung und Anwendung einer neuen Wildkatzen-Nachweismethode (Development and application of a new method of detecting wildcats. In German). Internal report. Hintermann & Weber AG Rodersdorf

  • Wells DL, Egli JM (2004) The influence of olfactory enrichment on the behaviour of captive black-footed cats, Felis nigripes. Appl Anim Behav Sci 85:107–119. doi:10.1016/j.applanim.2003.08.013

    Article  Google Scholar 

Download references

Acknowledgments

We thank Nicole Marini for the irreplaceable help in the field and laboratory work. We are grateful to Nevio Agostini, Davide Alberti and the Research, Conservation and Development Department of the Foreste Casentinesi National Park (Parco Nazionale delle Foreste Casentinesi Monte Falterona e Campigna) and the Rangers of Premilcuore (commando stazione di Premilcuore, Corpo Forestale dello Stato) for the indispensable logistic support in the fieldwork. Thanks to Stefano Anile, Cristiano Tarantini, Marco Lucchesi, Giancarlo Tedaldi, Gabriele Cristiani, Katharina Steyer, Darius Weber and all the wildlife experts that helped us to develop the methodology applied in this work. Gratitude also goes to Federica Mattucci, Francesca Davoli, Romolo Caniglia, Elena Fabbri, Chiara Mengoni, Nadia Mucci, Aritz Ruiz-Gonzàles, Silvana Lapalombella, Marco Galaverni, Valentina Rovelli, Davide Nespoli, Alessandra Palladini and all the colleagues of the Conservation Genetics Group of the Institute for Environmental Protection and Research (ISPRA) for the assistance and the support in the laboratory. We also thank Martin Bennet for the linguistic revision. Part of the field equipment was provided by the Università di Roma Tre. The molecular analyses were funded by the Institute for Environmental Protection and Research (ISPRA, Istituto Superiore per la Protezione e la Ricerca Ambientale).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Velli.

Additional information

Communicated by P. C. Alves

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velli, E., Bologna, M.A., Silvia, C. et al. Non-invasive monitoring of the European wildcat (Felis silvestris silvestris Schreber, 1777): comparative analysis of three different monitoring techniques and evaluation of their integration. Eur J Wildl Res 61, 657–668 (2015). https://doi.org/10.1007/s10344-015-0936-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-015-0936-2

Keywords

Navigation