Skip to main content

Advertisement

Log in

Source and Sink Relationship of Five Barley Genotypes Under Different Nitrogen Fertilizer Affected by Water Deficit

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

In order to investigate the effects of water stress and nitrogen fertilizer application on remobilization and grain yield of barley genotypes, two separate experiments were conducted at the Agricultural and Natural Resources Research Station of Miandoab during the years of 2014–2016 as a split plot based on randomized complete block design with three replications. The treatments included 5 genotypes and four nitrogen fertilizer levels (control or without fertilizer, 50, 100 and 150 kg ha−1 nitrogen (N) fertilizer). Under normal conditions, the maximum remobilization was obtained at 0 and 50 kg N application levels. N application increased non-significantly the remobilization under water deficit stress. The highest (1.22 g.m−2) and lowest (0.91 g.m−2) remobilization were recorded in 100 kg ha−1 N application and control. Bahman genotype, and Karoon and NK1272 genotypes had the highest remobilization under well irrigation and under water deficit, respectively. The highest remobilization to grain yield was related to 100 and 150 kg ha−1 N application. The comparison of N application levels showed that the highest current photosynthesis contribution from seed yield belongs to N application of 150 kg ha−1. Under water deficit, it was allocated to 50 kg ha−1. In conclusion, the greater grain yield in tolerant genotypes under water deficit was due to remobilization of unstructured carbohydrates from shoot to grain. Thus, it seems that selection of genotypes with higher translocated dry matter and contribution of assimilate in grain filling under water deficit, the suitable way for achieving cultivars with high grain yield under water deficit condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbad H, Samir Jordi ELJ, Jose-Luis B (2004) Comparison of flag leaf and ear photosynthesis with biomass and grain yield of durum wheat under various water conditions and genotypes. J Agron 24:19–28

    Google Scholar 

  • Abdoli M, Saeidi M (2012) Using different indices for selection of resistant wheat cultivars to post anthesis water deficit in the west of Iran. Ann Biol Res 3(3):1322–1333

    Google Scholar 

  • Ahmadi A, Joudi M, Tavakoli A, Ranjbar M (2009) Investigation of yield and its related morphological traits responses in wheat genotypes under drought stress and irrigation conditions. J Sci Technol Agric Nat Resour 12(46):155–166 (In Persian with English abstract)

    Google Scholar 

  • Ainsworth EA, Rogers A, Nelson R, Long SP (2004) Testing the “source sink” hypothesis of down-regulation of photosynthesis in elevated (CO2) in the field with single gene substitutions in Glycine max. Agric For Meteorol 122:85–94

    Google Scholar 

  • Ali MA, Niaz S, Abbas A, Sabirv Jabran K (2009) Genetic diversity and assessment of drought tolerant sorghum landraces based on morph-physiological traits at different growth stages. Plant Biol 2:214–227

    Google Scholar 

  • Araus JL, Sanchez-Bragado R, Vicente R (2021) Improving crop yield and resilience through optimization of photosynthesis: panacea or pipe dream? J Exp Bot 72:3936–3955

    CAS  PubMed  Google Scholar 

  • Biscoe PV, Scott RK, Monteith JL (1975) Barley and its environment. Part III: carbon budget of the stand. J Appl Ecol 12:269–291

    CAS  Google Scholar 

  • Blum A, Mayer J, Golan G (1988) The effect of grain number per ear (sink size) on source activity and its water-relations in wheat. J Exp Bot 39:106–114

    Google Scholar 

  • Bohrani A, Tahmasebi Sarvestani Z (2007) The amount and timing of nitrogen fertilizer on the accumulation and remobilization efficiency of flag leaf in two wheat cultivars. J Sci Technol Agric Nat Resour 11(40):147–154 (In Persian with English abstract)

    Google Scholar 

  • Calderini DF, Reynolds MP (2000) Changes in grain weight as a consequence of de-graining treatments at pre and post anthesis in synthetic hexaploid lines of wheat (Triticum durum and T. tauschii). Aust J Plant Physiol 27:183–191

    Google Scholar 

  • Chang TG, Song QF, Zhao HL, Chang S, Xin C, Qu M, Zhu XG (2020) An in situ approach to characterizing photosynthetic gas exchange of rice panicle. Plant Methods 16:92

    PubMed  PubMed Central  Google Scholar 

  • Christy AL, Porter CA (1982) Canopy photosynthesis and yield in soybean. In: Govindge (ed) Photosynthesis: development, carbon metabolism and plant productivity. Academic Press, New York, pp 499–511

    Google Scholar 

  • Dehghan A, Jahangiri B (2009) Interaction of irrigation and nitrogen on quantitative and qualitative characteristics of rapeseed. First Iranian national conference of plant physiology, University of Isfahan, p 36

    Google Scholar 

  • Donaldson E (1996) Crop traits for water stress tolerance. Am J Altern Agric 11:89–94

    Google Scholar 

  • Dordas CA, Sioulas C (2008) Safflower yield chlorophyll content, photosynthesis and water use efficiency response to nitrogen fertilization under rained conditions. Ind Crops Prod 27:75–85

    CAS  Google Scholar 

  • Ehdaie B, Alloush GA, Madore MA, Waines JG (2006) Genotypic variation for stem reserves and mobilization in wheat: I. post anthesis changes in internode dry matter. Crop Sci 46:735–746

    Google Scholar 

  • Ercoli L, Lulli L, Mariotti M, Masoni A, Arduini I (2007) Post anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability. Eur J Agron 28:138–147

    Google Scholar 

  • Evans LT, Bingham J, Jackson P, Sutherland J (1972) Effect of awns and drought on the supply of photosynthate and its distribution within wheat ears. Ann Appl Biol 70:67–76

    Google Scholar 

  • Fang Y, Bing-Cheng X, Neil T, Feng-Min L (2010) Grain yield, dry matter accumulation and remobilization and root respiration in winter wheat as affected by seeding rate and root pruning. Eur J Agron 33:257–266

    Google Scholar 

  • Foulkes MJ, Sylvester-Bradley R, Weightman RR, Snape JW (2007) Identifying physiological traits associated with improved drought resistance in winter wheat. Field Crop Res 103:11–24

    Google Scholar 

  • Gelang J, Pleijel H, Sild E, Danielsson H, Younis S, Selldén G (2000) Rate and duration of grain filling in relation to flag leaf senescence and grain yield in spring wheat (Triticum aestivum L.) exposed to different concentrations of ozone. Plant Physiol 110:366–375

    CAS  Google Scholar 

  • Gholinezhad E, Sajedi N (2012) Evaluationof water deficit stress effects, different rates of nitrogen and plant density on remobilization, current photosynthesis and grain yield in sunflower var. Iroflor. World Appl Sci J 19(5):650–658

    Google Scholar 

  • Hassani Jabarlo KH, Roshdi M, Ghafarlo M, Valilo R (2008) The effect of density on yield and yield components in sunflower cultivars in Khoy. J Crop Sci 1(1):99–107

    Google Scholar 

  • Hatami H, Inehband A, Azizi M, Dadkhah A (2009) Effect of n fertilizer on growth and yield of soybean at north khorasan. J Crop Sci 2(2):25–42

    Google Scholar 

  • Jones MG (2009) Using resources from the model plant Arabidopsis thaliana to understand effects of abiotic stress. Salin Water Stress 44:129–132

    Google Scholar 

  • Liu F, Andersen MN, Jensen CR (2003) Loss of pod set caused by drought stress is associated with water status and ABA content of reproductive structures in soybean. Funct Plant Biol 30:271–280

    CAS  PubMed  Google Scholar 

  • Liu F, Jensen CR, Andersen MN (2004) Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set. Field Crop Res 86:1–13

    CAS  Google Scholar 

  • Madani A, Shiranirad Pazoki AH, Nourmohammadi A, Zarghami G (2010) Grain filling and dry matter partitioning responses to source: sink modifications under post-anthesis water and nitrogen deficiencies in winter wheat (Triticum aestivum L.). Acta Sci Agron 32:145–151

    CAS  Google Scholar 

  • Mahfoozi S, Jasemi S (2010) Study of the possibility of increasing grain yield by increasing grain weight in winter and facultative wheat genotypes with manipulating sink capacity. Iran J Field Crop Sci 12(1):76–84

    Google Scholar 

  • Maydupa ML, Antoniettaa M, Guiameta Gracianoa JJ, Lópezb C, Tambussia EA (2010) The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum). Field Crop Res 119:48–58

    Google Scholar 

  • Miralles DJ, Slafer GA (1995) Yield, biomass and yield components in dwarf, semi-dwarf and tall isogonic lines of spring wheat under recommended and late sowing dates. Plant Breed 114:392–396

    Google Scholar 

  • Molero G, Reynolds MP (2020) Spike photosynthesis measured at high throughput indicates genetic variation independent of flag leaf photosynthesis. Field Crop Res 255:107866

    Google Scholar 

  • Papakosta DK, Gagianas AA (1991) Nitrogen and Dry Matter Accumulation, Remobilization, and Losses for Mediterranean Wheat during Grain Filling. J Agron 83:864–870

  • Racz I, Hirişcău D, Berindean I, Kadar R, Muntean E, Tritean N, Russu F, Ona A, Muntean L (2022) The Influence of flag leaf removal and its characteristics on main yield components and yield quality indices on wheat. Agronomy 12(10):2545

    CAS  Google Scholar 

  • Ribeiro RV, Machado EM, Habermann G, Santos MG, Oliveira RF (2012) Seasonal effects on the relationship between photosynthesis and leaf carbohydrates in orange trees. Funct Plant Biol 39:471–480

    CAS  PubMed  Google Scholar 

  • Saeidi M, Moradi F, Ahmadi A, Spehri R, Najafian G, Shabani A (2010) The effects of terminal water stress on physiological characteristics and sink-source relations in two bread wheat (Triticum aestivum L.) cultivars. Iran J Crop Sci 12(4):392–408

    Google Scholar 

  • Saeidi M, Moradi F, Jalali-Honarmand S (2011) Contribution of spike and leaves photosynthesis and soluble stem carbohydrates remobilization in grain yield formation in two bread wheat cultivars under post-anthesis stress conditions. Plant Seed J 27(1):1–19 (In Persian with English abstract)

    Google Scholar 

  • Sanchez-Bragado R, Vicente R, Molero G, Serret MD, Maydup ML, Araus JL (2020) New avenues for increasing yield and stability in C3 cereals: exploring ear photosynthesis. Curr Opin Plant Biol 56:223–234

    PubMed  Google Scholar 

  • Shah NH, Paulsen GM (2003) Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil 257:219–226

    CAS  Google Scholar 

  • Sieling K, Beims S (2007) Effects of 15N split-application on soil and fertilizer n uptake of barley, oilseed rape and wheat in different cropping systems. J Agron Crop Sci 193:10–20

    CAS  Google Scholar 

  • Steel RGD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Tambussi EA, Nogue Araus S (2005) Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta 221:446–458

    CAS  PubMed  Google Scholar 

  • Wardlaw F (1980) Translocation and source-sink relationships. In: Carlson, P.S. (ed) The biology of crop productivity. Academic Press, New York, pp 297–333

  • Westgate ME, Peterson CM (1993) Flower and pod development in water-deficient soybean (Glycine max L. Merr.). J Exp Bot 44:109–117

    Google Scholar 

  • Westgate ME, Thomson GL (1989) Water deficits and reproduction in maize. Responses of the reproductive tissues to water deficits at anthesis and mid-grain fill. Plant Physiol 91:862–867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhang J (2006) Grain filling of cereals under soil drying. New Phytol 169:223–236

    CAS  PubMed  Google Scholar 

  • Zhang H, Li X, Guan D, Wang A, Yuan F, Wu J (2021) Nitrogen nutrition addition mitigated drought stress by improving carbon exchange and reserves among two temperate trees. Agric For Meteorol 311:108693

    Google Scholar 

  • Zhao B, Ata-Ul-Karim ST, Lemaire G, Duan A, Liu Z, Guo Y, Qin A, Ning D, Liu Z (2021) Exploring the nitrogen source-sink ratio to quantify ear nitrogen accumulation in maize and wheat using critical nitrogen dilution curve. Field Crop Res 274:108332

    Google Scholar 

  • Zhu GX, Midmore DJ, Radford BJ, Yule DF (2004) Effect of timing of defoliation on wheat (Triticum aestivum) in central Queensland. Field Crop Res 88:211–226

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soleyman Mohammadi.

Ethics declarations

Conflict of interest

K. Ghaderi, S. Mohammadi, M. Dadashi and A. Majidi declare that they have no competing interests.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaderi, K., Mohammadi, S., Dadashi, M. et al. Source and Sink Relationship of Five Barley Genotypes Under Different Nitrogen Fertilizer Affected by Water Deficit. Gesunde Pflanzen 75, 2747–2756 (2023). https://doi.org/10.1007/s10343-023-00889-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-023-00889-2

Keywords

Navigation