Skip to main content

Advertisement

Log in

Mineral Composition of Bread Wheat Cultivars as Influenced by Different Fertilizer Sources and Weed Management Practices

Mineralstoffzusammensetzung von Brotweizensorten unter dem Einfluss verschiedener Düngerquellen und Unkrautbekämpfungsmethoden

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Mineral and vitamin deficiencies are one of the important threats especially in developing and under-developed countries. Wheat grain also contains a number of elements vital to our biological functions, but hazardous to our health in high concentrations. This research was carried out to determine the effects of agronomic practices on the mineral composition of organically grown bread wheat (Triticum aestivum L.) varieties. In terms of all nutrients evaluated, the mineral content of wheat showed significant differences according to crop years, varieties, weed management methods and fertilizer sources. As the average of all factors, the Cu, Fe, Mn, Se, Zn, Cd, Co, Cr, Ni and Pb contents of the ground wheat grain were 3.93, 42.8, 79.6, 0.549, 11.34, 0.012, 0.140, 0.194, 3.71 and 0.269 mg/kg, respectively. According to the wheat varieties, the Kirik was superior in terms of Cu (7.6%), Fe (3.8%), Se (57%), Zn (40.5%), Co (31.1%) and Cr (36.1%), and the Dogu-88 was superior in terms of Mn (5.5%), Cd (1.9%), and Ni (17.0%). The effect of weed management methods on mineral content was variable. According to fertilizer sources, the highest mineral content was obtained from the control plots without fertilizer treatments. The lowest mineral contents were obtained from chemical fertilization, cattle manure and organic fertilizer applications. There was no significant increase in the mineral content of wheat with organic fertilization, however, organic agriculture still preserves its place in terms of healthy food. As a result, it has been determined that the values obtained for all mineral elements were not at a level that pose a risk on the environment, human and animal health according to WHO. In order to identify wheat varieties with higher mineral content, which are beneficial for human health, new research should be done with different organic fertilizer sources with more varieties.

Zusammenfassung

Mineralstoff- und Vitaminmangel sind vor allem in Entwicklungsländern und unterentwickelten Ländern eine große Bedrohung. Auch Weizenkörner enthalten eine Reihe von Elementen, die für unsere biologischen Funktionen lebenswichtig, in hohen Konzentrationen jedoch gesundheitsschädlich sind. In dieser Studie wurden die Auswirkungen der agronomischen Praktiken auf die Mineralstoffzusammensetzung von ökologisch angebauten Brotweizensorten (Triticum aestivum L.) untersucht. Bei allen bewerteten Nährstoffen wies der Mineralstoffgehalt von Weizen je nach Anbaujahr, Sorte, Unkrautbekämpfungsmethode und Düngerquelle signifikante Unterschiede auf. Im Durchschnitt aller Faktoren betrugen die Gehalte an Cu, Fe, Mn, Se, Zn, Cd, Co, Cr, Ni und Pb im gemahlenen Weizenkorn 3,93, 42,8, 79,6, 0,549, 11,34, 0,012, 0,140, 0,194, 3,71 bzw. 0,269 mg/kg. Bei den Weizensorten war Kirik in Bezug auf Cu (7,6 %), Fe (3,8 %), Se (57 %), Zn (40,5 %), Co (31,1 %) und Cr (36,1 %) überlegen, während Dogu-88 in Bezug auf Mn (5,5 %), Cd (1,9 %) und Ni (17,0 %) überlegen war. Die Auswirkungen der Unkrautbekämpfungsmethoden auf den Mineralstoffgehalt waren unterschiedlich. Je nach Düngerquelle wurde der höchste Mineralstoffgehalt in den Kontrollen ohne Düngerbehandlung erzielt. Die niedrigsten Mineralstoffgehalte wurden durch chemische Düngung, Kuhmist und organische Düngung erzielt. Die organische Düngung führte nicht zu einer signifikanten Erhöhung des Mineralstoffgehalts des Weizens, dennoch behält die ökologische Landwirtschaft ihren Platz in Bezug auf gesunde Lebensmittel. Als Ergebnis wurde festgestellt, dass die für alle Mineralelemente ermittelten Werte nicht auf einem Niveau lagen, das laut WHO ein Risiko für die Umwelt sowie die Gesundheit von Mensch und Tier darstellt. Um Weizensorten mit höherem Mineralstoffgehalt zu identifizieren, die für die menschliche Gesundheit vorteilhaft sind, sollten neue Forschungen mit verschiedenen organischen Düngemitteln und weiteren Sorten durchgeführt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad K, Wajid K, Khan ZI, Ugulu I, Memoona H, Sana M, Nawaz K, Malik IS, Bashir H, Sher M (2019) Evaluation of potential toxic metals accumulation in wheat irrigated with wastewater. Bull Environ Contam Toxicol 102:822–828

    Article  CAS  PubMed  Google Scholar 

  • Al-Gahri MA, Almussali MS (2008) Microelement contents of locally produced and imported wheat grains in Yemen. J Chem 5:838–843

    CAS  Google Scholar 

  • Andersson A (1992) Trace elements in agricultural soils—fluxes, balances and background values. Report, vol 4077. Swedish Environmental Protection Agency, Stockholm

    Google Scholar 

  • Anglani C (1998) Wheat minerals—a review. Plant Foods Hum Nutr 52:177–186

    Article  CAS  PubMed  Google Scholar 

  • Balk J, Connorton JM, Wan Y, Lovegrove A, Moore KL, Uauy C, Sharp PA, Shewry PR (2019) Improving wheat as a source of iron and zinc for global nutrition. Nutr Bull 44:53–59. https://doi.org/10.1111/nbu.12361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birinci A, Ozturk A, Bulut S, Ikikat Tumer E (2010) The effects of different fertilizer sources and weed control methods on gross production value and gross profit in organic wheat. In: Turkey IV. Organic Agriculture Symposium, pp 115–119 (Erzurum (in Turkish))

    Google Scholar 

  • Bulut S (2022a) Mineral content of some bread wheat cultivars. Cereal Res Commun. https://doi.org/10.1007/s42976-021-00235-0 (in press)

    Article  Google Scholar 

  • Bulut S (2022b) Mineral composition of emmer wheat (Triticum turgidum L. var. dicoccum) landraces. Fresenius Environ Bull 31(01A):963–970

    CAS  Google Scholar 

  • Bulut S, Çoruh İ, Öztürk A (2012) Effects of different fertilizer sources on weed growth in organic wheat. J Agric Sci 18(4):263–276. https://doi.org/10.1501/Tarimbil_0000001215

    Article  Google Scholar 

  • Bulut S, Ozturk A, Karaoglu MM, Yildiz N (2013) Effects of organic manures and non-chemical weed control on wheat. II. Grain quality. Turk J Agric For 37(3):271–280. https://doi.org/10.3906/tar-1208-19

    Article  Google Scholar 

  • Bulut S, Ozturk A, Yildiz N, Karaoglu MM (2022) Mineral composition of wheat species as influenced by different fertilizer sources and different weed control practices. https://doi.org/10.21203/rs.3.rs-1107511/v2 (Preprint)

    Book  Google Scholar 

  • Cary EE, Allaway WH, Olson OE (1975) Control of chromium concentrations in food plants. 1. Absorption and translocation of chromium by plants. J Agric Food Chem 25:300–304

    Article  Google Scholar 

  • Chen J, Jiang Y, Shi H, Peng Y, Fan X, Li C (2020) The molecular mechanisms of copper metabolism and its roles in human diseases. Pflügers Arch Eur J Physiol 472:1415–1429

    Article  CAS  Google Scholar 

  • Ciudad-Mulero M, Matallana-González MC, Callejo MJ, Carrillo JM, Morales P, Fernández-Ruiz V (2021) Durum and bread wheat flours. Preliminary mineral characterization and its potential health claims. Agronomy 11:1–13

    Article  Google Scholar 

  • Conti ME, Cubadda F, Carcea M (2000) Trace metals in soft and durum wheat from Italy. Food Addit Contam 17(1):45–53

    Article  CAS  PubMed  Google Scholar 

  • Dogan Y, Ugulu I, Baslar S (2010) Turkish red pine as a biomonitor: a comparative study of the accumulation of trace elements in needles and barks. Ekoloji 19(75):88–96

    Article  CAS  Google Scholar 

  • Dogan Y, Baslar S, Ugulu I (2014) A study on detecting heavy metal accumulation through biomonitoring: content of trace elements in plants at Mount Kazdagi in Turkey. Appl Ecol Environ Res 12(3):627–636

    Article  Google Scholar 

  • EC, European Comission (2006of) Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J. Eur. Union, vol L364/5

    Google Scholar 

  • Fairweather-Tait SJ (1997) Bioavailability of selenium. Eur J Clin Nutr 51:20–23

    Google Scholar 

  • FAO (2001) Codex Alimentarius Commission. Food additive and contaminants. Joint FAO/WHO Food Standards Programme. ALINORM 01(12A):1–289

    Google Scholar 

  • Ficco DBM, Riefolo C, Nicastro G, De Simone V, Di Gesu AM, Beleggia R (2009) Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars. Field Crops Res 111:235–242

    Article  Google Scholar 

  • Gao X, Lukow OM, Grant CA (2012) Grain concentrations of protein, Fe and Zn and bread making quality in spring wheat as affected by seeding date and nitrogen fertilizer management. J Geochem Explor 121:36–44

    Article  CAS  Google Scholar 

  • Gazoulis I, Kanatas P, Antonopoulos N (2021) Cultural practices and mechanical weed control for the management of a low-diversity weed community in spinach. Diversity 13:616. https://doi.org/10.3390/d13120616

    Article  Google Scholar 

  • Ghanbari GA, Mameesh MS (1971) Iron, zinc, manganese, and copper content of semidwarf wheat varieties grown under different agronomic conditions. Cereal Chem 48:411–414

    CAS  Google Scholar 

  • Grzeszczak K, Kwiatkowski S, Kosik-Bogacka D (2020) The role of Fe, Zn, and Cu in pregnancy. Biomolecules 10(8):2–34

    Article  Google Scholar 

  • Hamner K, Eriksson J, Kirchmann H (2013) Nickel in Swedish soils and cereal grain in relation to soil properties, fertilization and seed quality. Acta Agric Scand Sect B 63:712–722

    CAS  Google Scholar 

  • Hassan NU, Mahmood Q, Waseem A, Irshad M, Faridullah M, Pervez A (2013) Assessment of heavy metals in wheat plants irrigated with contaminated wastewater. Pol J Environ Stud 22(1):115–123

    Google Scholar 

  • Hernandez Rodriguez L, Afonso Morales D, Rodriguez Rodriguez E, Diaz Romero C (2011) Minerals and trace elements in a collection of wheat landraces from the Canary Islands. J Food Compost Anal 24:1081–1090

    Article  Google Scholar 

  • Hussain A, Larsson H, Kuktaite R, Johansson E (2010) Mineral composition of organically grown wheat genotypes: contribution to daily minerals intake. Int J Environ Res Public Health 7(9):3442–3456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain A, Larsson H, Kuktaite R, Johansson E (2012) Healthy food from organic wheat: choice of genotypes for production and breeding. J Sci Food Agric 92(14):2826–2832

    Article  CAS  PubMed  Google Scholar 

  • Jaskulska I, Jaskulski D, Gałęzewski L, Knapowski T, Kozera W, Wacławowicz R (2018) Mineral composition and baking value of the winter wheat grain under varied environmental and agronomic conditions. J Chem. https://doi.org/10.1155/2018/5013825

    Article  Google Scholar 

  • Johansson E, Prieto-Linde ML, Larsson H (2021) Locally adapted and organically grown landrace and ancient spring cereals—A unique source of minerals in the human diet. Foods 10(2):393. https://doi.org/10.3390/foods10020393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanatas PJ, Gazoulis I (2022) The integration of increased seeding rates, mechanical weed control and herbicide application for weed management in chickpea (Cicer arietinum L.). Phytoparasitica 50:255–267. https://doi.org/10.1007/s12600-021-00955-3

    Article  CAS  Google Scholar 

  • Khan ZI, Nisar A, Ugulu I, Ahmad K, Wajid K, Bashir H, Dogan Y (2019) Determination of cadmium concentrations of vegetables grown in soil irrigated with wastewater: evaluation of health risk to the public. Egypt J Bot 59(3):753–762

    Google Scholar 

  • Kirchmann H, Mattsson L, Eriksson J (2009) Trace element concentration in wheat grain: results from the Swedish long-term soil fertility experiments and national monitoring program. Environ Geochem Health 31:561–571

    Article  CAS  PubMed  Google Scholar 

  • Klevay LM (2000) Cardiovascular disease from copper deficiency—a history. J Nutr 130(2):489–492

    Article  Google Scholar 

  • Kovacevic V, Kadar I, Rastija M, Iljkic D (2013) Response of maize and winter wheat to liming with hydratized lime. Novenytermeles 62:47–50

    Google Scholar 

  • Kumar P, Yadava RK, Gollen B, Kumar S, Verma RK, Yadav S (2011) Nutritional contents and medicinal properties of wheat. A review. Life sciences and medicine research, vol LSMR-221

    Google Scholar 

  • Lakhdar A, Achiba WB, Montemurro F, Jedidi N, Abdelly C (2009) Effect of municipal solid waste compost and farmyard manure application on heavy-metal uptake in wheat. Commun Soil Sci Plant Anal 40:3524–3538

    Article  CAS  Google Scholar 

  • Lyons GH, Ortiz-Monasterio I, Stangoulis J, Graham RD (2005) Selenium concentration in wheat grain: Is there sufficient genotypic variation to use in breeding? Plant Soil 269:369–380

    Article  CAS  Google Scholar 

  • Lyons GH, Stangoulis JCR, Graham RD (2003) High-selenium wheat: biofortification for better health. Nutr Res Rev 16:45–60

    Article  CAS  PubMed  Google Scholar 

  • Mie A, Andersen HR, Gunnarsson S, Kahl J, Kesse-Guyot E, Rembiałkowska E, Quaglio G, Grandjean P (2017) Human health implications of organic food and organic agriculture: a comprehensive review. Environ Health 16:111. https://doi.org/10.1186/s12940-017-0315-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuss ET, Tanumihardjo SA (2010) Maize: a paramount staple crop in the context of global nutrition. Compr Rev Food Sci Food Saf 9:417–436

    Article  CAS  PubMed  Google Scholar 

  • Olgun M, Ardıç M, Turan M, Sezer O, Budak Başçiftçi Z, Ayter G, Koyuncu O (2017) Changes in the mineral contents of bread wheat genotypes during the development periods of wheat. Selcuk J Agric Food Sci 30(2):79–87

    Google Scholar 

  • Ozturk A, Bulut S, Yildiz N, Karaoglu MM (2012) Effects of organic manures and non-chemical weed control on wheat: I‑plant growth and grain yield. J Agric Sci 18(1):9–20

    Google Scholar 

  • Rayman MP (2002) The argument for increasing selenium intake. Proc Nutr Soc 61(2):203–215

    Article  CAS  PubMed  Google Scholar 

  • Ryan M, Derrick J, Dann P (2004) Grain mineral concentrations and yield of wheat grown under organic and conventional management. J Sci Food Agric 84:207–216

    Article  CAS  Google Scholar 

  • Schulin R, Khoshgoftarmanesh A, Afyuni M, Nowack B, Frossard E (2009) Effect of soil management on zinc uptake and its bioavailability in plants. In: Banuelos GS, Lin Z (eds) Development and uses of biofortified agricultural products. CRC, Boca Raton

    Google Scholar 

  • Shewry PR, Hey SJ (2015) The contribution of wheat to human diet and health. Food Energy Secur 4(3):178–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Shewry PR, Powers S, Field JM, Fido RJ, Jones HD, Arnold GM, West J, Lazzeri PA, Barcelo P, Barro F, Tatham AS, Bekes F, Butow B, Darlington H (2006) Comparative field performance over three years and two sites of transgenic wheat lines expressing HMW subunit transgenes. Theor Appl Genet 113:128–136

    Article  CAS  PubMed  Google Scholar 

  • Skrbic B, Onjia A (2007) Multivariate analyses of microelement contents in wheat cultivated in Serbia 2002. Food Control 18(4):338–345

    Article  CAS  Google Scholar 

  • Stefanovic VZ, Filipovic NK, Jovanovic BM (2008) Undesirable metals content in wheat of different wheat varieties. APTEFF 39:69–76

    Article  CAS  Google Scholar 

  • Strauss E (1999) Developmental biology—selenium’s role in infertility explained. Science 285:1339

    Article  CAS  PubMed  Google Scholar 

  • Suchowilska E, Wiwart M, Kandler W, Krska R (2012) A comparison of macro- and microelement concentrations in the whole grain of four Triticum species. Plant Soil Environ 58:141–147

    Article  CAS  Google Scholar 

  • Tarighi H, Majidian M, Baghaie AH, Gomarian M (2012) Zinc availability of two wheat cultivars in soil amended with organic and inorganic Zn sources. Afr J Biotechnol 11(2):436–443

    CAS  Google Scholar 

  • Topping D (2007) Cereal complex carbohydrates and their contribution to human health. J Cereal Sci 46:220–229

    Article  CAS  Google Scholar 

  • Ugulu I, Ahmad K, Khan ZI, Munir M, Wajid K, Bashir H (2021) Effects of organic and chemical fertilizers on the growth, heavy metal/metalloid accumulation, and human health risk of wheat (Triticum aestivum L.). Environ Sci Pollut Res Int 28(10):12533–12545

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Cui X, Cheng H, Chen F, Wang J, Zhao X, Pu X (2015) A review of soil cadmium contamination in China including a health risk assessment. Environ Sci Pollut Res 22(21):16441–16452

    Article  CAS  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2015) The global prevalence of anaemia in 2011. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2021) The global anaemia estimates, 2021. World Health Organization, Geneva

    Google Scholar 

  • Wyszkowski M, Brodowska MS (2020) Content of trace elements in soil fertilized with potassium and nitrogen. Agriculture 10(9):398

    Article  CAS  Google Scholar 

  • Zhang MY, Yang YH, Feng CN, Guo WS, Li CY, Zhu XK (2014) Responses of concentration of mineral to zinc biofortification in different wheat genotyes. J Triticeae Crops 34:489–494

    Google Scholar 

  • Zhao FJ, Su YK, Dunham SJ, Rakszegi M, Bedob Z, McGrath SP, Shewryc PR (2009) Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J Cereal Sci 49(2):290–295

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thanks to TÜBİTAK (Project No: TOVAG 106O726), Agricultural Research and Extension Center of Ataturk University and Technology Research and Application Center (TAUM) of Erciyes University for their convenience in project, field and laboratory studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sancar Bulut.

Ethics declarations

Conflict of interest

S. Bulut, A. Özturk, N. Yıldız and M.M. Karaoğlu declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulut, S., Özturk, A., Yıldız, N. et al. Mineral Composition of Bread Wheat Cultivars as Influenced by Different Fertilizer Sources and Weed Management Practices. Gesunde Pflanzen 74, 1087–1098 (2022). https://doi.org/10.1007/s10343-022-00671-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00671-w

Keywords

Schlüsselwörter

Navigation