Skip to main content
Log in

Does Potassium Silicate Improve Physiological and Agronomic Traits and Oil Compositions of Rapeseed Genotypes Under Well-Watered and Water-Limited Conditions?

Verbessert Kaliumsilikat die physiologischen und agronomischen Eigenschaften und die Ölzusammensetzung von Rapsgenotypen unter ausreichend bewässerten und wasserlimitierten Bedingungen?

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

A field experiment (2018–2020) was arranged as factorial split-plot in a RCBD with three replications to assess the influences of potassium silicate on rapeseed genotypes under well-watered and drought stress conditions. Main plots included two regimes of full irrigation and withholding irrigation from silique setting and foliar spray of potassium silicate at two levels of non-application and potassium silicate application (4 g l−1). Subplots contained seven genotypes of WRL-95-13, WRL-95-15, WRL-95-17, WRL-95-20, WRL95-23, WRL-95-28, and Nafis. Drought stress increased stomatal resistance, canopy temperature, soluble carbohydrate content, and proline content; by contrast, the chlorophyll content, relative water content (RWC), seeds per silique, silique per plant, thousand-seed weight, seed yield, and water use efficiency (WUE) were reduced when the rapeseed plants experienced drought stress. The oil content and quality of genotypes were higher in the well-watered irrigation regime than in the drought stress regime. The spraying of potassium silicate helped to improve the growth of rapeseed genotypes by increasing the RWC and chlorophyll content and reducing the stomatal resistance and canopy temperature in both irrigation regimes. The increase in the contents of oleic and linoleic acids and reduction in the contents of erucic acid and glucosinolate caused an enhancement in the oil quality when potassium silicate was applied. Overall, the high quantity and quality of oil can be achieved in rapeseed agroecosystems through full irrigation and spraying potassium silicate.

Zusammenfassung

Ein Feldversuch (2018–2020) wurde als faktorieller Split-Plot unter randomisierten kontrollierten Bedingungen mit drei Wiederholungen angelegt, um die Einflüsse von Kaliumsilikat auf Rapsgenotypen unter gut bewässerten und Trockenstressbedingungen zu bewerten. Die Hauptplots umfassten zwei Bewässerungsregimes – die Vollbewässerung und die reduzierte Bewässerung ab dem Einsatz der Silikate – sowie die Blattspritzung mit Kaliumsilikat in zwei Stufen: Nichtanwendung und Anwendung von Kaliumsilikat (4 g l−1). Die Subplots enthielten sieben Genotypen von WRL-95-13, WRL-95-15, WRL-95-17, WRL-95-20, WRL-95-23, WRL-95-28 und Nafis. Trockenstress erhöhte die stomatäre Widerstandskraft, die Kronenoberflächentemperatur, den Gehalt an löslichen Kohlenhydraten und den Prolingehalt; im Gegensatz dazu wurden der Chlorophyllgehalt, der relative Wassergehalt (RWC), die Samen pro Schote, die Schoten pro Pflanze, das 1000-Samen-Gewicht, der Samenertrag und die Wassernutzungseffizienz (WUE) reduziert, wenn die Rapspflanzen Trockenstress ausgesetzt waren. Der Ölgehalt und die Qualität der Genotypen waren bei gut bewässerter Bewässerung höher als bei Trockenstress. Die Besprühung mit Kaliumsilikat trug dazu bei, das Wachstum der Rapsgenotypen zu verbessern, indem sie den RWC und den Chlorophyllgehalt erhöhte und den stomatären Widerstand und die Kronenoberflächentemperatur in beiden Bewässerungsregimes reduzierte. Die Erhöhung des Gehalts an Ölsäure und Linolsäure und die Verringerung des Gehalts an Erucasäure und Glucosinolat führten zu einer Verbesserung der Ölqualität, wenn Kaliumsilikat angewendet wurde. Insgesamt kann in Raps-Agrarökosystemen durch Vollbewässerung und Besprühen mit Kaliumsilikat eine hohe Ölmenge und -qualität erzielt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Afshari Behbahanizadeh S, Akbari GHA, Shahbazi MM, Alahdadi I (2014) Measuring leaf temperature and stomatal conductance to evaluate leaf water content in barley cultivars under terminal drought stress. Int J Biosci 4(1):298–305. https://doi.org/10.12692/ijb/4.1.298-305

    Article  Google Scholar 

  • Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB (1998) Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod Sci 1:96–103

    Article  Google Scholar 

  • Ahmed M, Hassan FU, Khurshid Y (2011a) Does silicon and irrigation have impact on drought tolerance mechanism of sorghum? Agric Water Manag 98:1808–1812. https://doi.org/10.1016/j.agwat.2011.07.003

    Article  Google Scholar 

  • Ahmed M, Hassen FU, Qadeer U, Aslam MA (2011b) Silicon application and drought tolerance mechanism of sorghum. Afr J Agric Res 6:594–607

    Google Scholar 

  • American Oil Chemists’ Society (AOCS) (1993) Methods Ag 1‑65 and Ce 1‑62. Official methods and recommended practices of the American Oil Chemists’ Society.

    Google Scholar 

  • Amiri-Darban N, Nourmohammadi GH, Shirani Rad AH, Mirhadi SMJ, Majidi Heravan I (2020) Potassium sulfate and ammonium sulfate affect quality and quantity of camelina oil grown with different irrigation regimes. Ind Crops Prod 148:112308. https://doi.org/10.1016/j.indcrop.2020.112308

    Article  CAS  Google Scholar 

  • Arnon AN (1967) Method of extraction of chlorophyll in the plants. Agron J 23:112–121

    Google Scholar 

  • Artyszak A (2018) Effect of silicon fertilization on crop yield quantity and quality—a literature review in Europe. Plants 7:54. https://doi.org/10.3390/plants7030054

    Article  CAS  PubMed Central  Google Scholar 

  • Azadmard-Damirchi S, Dutta PC (2006) Novel solid-phase extraction method to separate 4 desmethyl-, 4 monomethyl-, and 4, 40-dimethylsterols in vegetable oils. J Chromatogr 1108:183–187. https://doi.org/10.1016/j.chroma.2006.01.015

    Article  CAS  Google Scholar 

  • Baldini M, Givanardi R, Vanozzi GP (2000) Effect of different water availability on fatty acid composition of the oil in standard and high oleic sunflower hybrids. Proceedings of XV International Sunflower Conference Toulouse, pp 79–84

    Google Scholar 

  • Bates LS, Waldern RP, Teave ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Cakmak I (2005) K alleviates detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168(4):521–530. https://doi.org/10.1002/jpln.200420485

    Article  CAS  Google Scholar 

  • De Vos RCH, Ten Bookum WM, Voojis R, Schat H, Deko LJ (1993) Effect of copper on fatty acid composition and peroxydation of lipids in the roots of copper tolerant and sensitive Silene cucubalus. Plant Physiol Biochem 31:151–158

    Google Scholar 

  • Dhopte AM, Manuel LM (2002) Principles and techniques for plant scientists, 1st end. Updesh Purohit for Agrobios (India). Odhpur 81:373

    Google Scholar 

  • Dubois D, Gilleres KA, Hamilton JK (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Estaji A, Niknam F (2020) Foliar salicylic acid spraying effect’ on growth, seed oil content, and physiology of drought-stressed Silybum marianum L. plant. Agric Water Manag 234:106116. https://doi.org/10.1016/j.agwat.2020.106116

    Article  Google Scholar 

  • Eyni-Nargeseh H, Aghaalikhani M, Shirani Rad AH, Mokhtassi-Bidgoli A, Modares Sanavy SAM (2020) Comparison of 17 rapeseed cultivars under terminal water deficit conditions using drought tolerance indices. J Agric Sci Technol 22(2):489–503

    Google Scholar 

  • Fang Y, Wang L, Xin Z, Zhao L, An X, Hu Q (2008) Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in china. J Agric Food Chem 56:2079–2084

    Article  CAS  PubMed  Google Scholar 

  • FAO (2017) Food outlook. Global market analysis (http://www.fao. Foodoutlook.com)

    Google Scholar 

  • Farahani S, Majidi Heravan E, Shirani Rad AH, Noormohammadi GH (2019) Effect of potassium sulfate on quantitative and qualitative characteristics of canola cultivars upon late-season drought stress conditions. J Plant Nutr 42(13):1543–1555. https://doi.org/10.1080/01904167.2019.1628987

    Article  CAS  Google Scholar 

  • Faraji A, Lattifi N, Soltani A, Shirani-Rad AH (2009) Seed yield and water use efficiency of canola (Brassica napus L.) as affected by high temperature stress and supplemental irrigation. Agric Water Manag 96:132–140. https://doi.org/10.1016/j.agwat.2008.07.014

    Article  Google Scholar 

  • Fieldsend JK, Murray FE, Bilsborrow PE, Milford GFL, Evans EJ (1991) Glucosinolate accumulation during seed development in winter sown oilseed rape (B. napus). In: McGregor DI (ed) Proceedings of 8th international rapeseed congress Canada Saskatoon, pp 686–694

    Google Scholar 

  • Gao M, Zhou J, Liu H, Zhang W, Hu Y, Liang J, Zhou J (2018) Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Sci Total Environ 631:1100–1108. https://doi.org/10.1016/j.scitotenv.2018.03.047

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647

    Article  CAS  Google Scholar 

  • Habibi G (2014) Silicon supplementation improves drought tolerance in canola plants. Russ J Plant Physiol 61(6):784–791. https://doi.org/10.1134/S1021443714060077

    Article  CAS  Google Scholar 

  • Harinder P, Makkar S, Siddhuraju P, Becker K (2007) Plant secondary metabolites. Humana Press, pp 58–60

    Google Scholar 

  • Hosni K, Jemli M, Dziri S, M’rabet Y, Ennigrou A, Sghaier A, Casabianca H, Vulliet E, Brahim BN, Sebei H (2011) Changes in phytochemical, antimicrobial and free radical scavenging activities of the Peruvian pepper tree (Schinus molle L.) as influenced by fruit maturation. Ind Crops Prod 34:1622–1628. https://doi.org/10.1016/j.indcrop.2011.06.004

    Article  CAS  Google Scholar 

  • ISO 5511 (1992) Oilseeds—determination of oil content—method using continuous-wave low-resolution nuclear magnetic resonance spectrometry (rapid method)

  • Jang SW, Sadiq NB, Hamayun M, Jung J, Lee T, Yang JS, Lee B, Kim HY (2020) Silicon foliage spraying improves growth characteristics, morphological traits, and root quality of Panax ginseng C.A.Mey. Ind Crops Prod 156:112848. https://doi.org/10.1016/j.indcrop.2020.112848

    Article  CAS  Google Scholar 

  • Keshavarz H (2020) Study of water deficit conditions and beneficial microbes on the oil quality and agronomic traits of canola (Brassica napus L.). Grasas Y Aceites. https://doi.org/10.3989/gya.0572191

    Article  Google Scholar 

  • Laribi B, Bettaieb I, Kouki K, Sahli A, Mougou A, Marzouk B (2009) Water deficit effects on caraway (Carum carvi L.) growth, essential oil and fatty acid composition. Ind Crops Prod 30:372–379. https://doi.org/10.1016/j.indcrop.2009.07.005

    Article  CAS  Google Scholar 

  • Li Z, Song Z, Yan Z, Hao Q, Song A, Liu L, Yang X, Xia S, Liang Y (2018) Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis. Agron Sustain Dev 38:26. https://doi.org/10.1007/s13593-018-0496-4

    Article  Google Scholar 

  • Liang Y, Zhang W, Chen Q, Ding R (2005) Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 53:29–37. https://doi.org/10.1016/j.envexpbot.2004.02.010

    Article  CAS  Google Scholar 

  • Lopes MS, Reynolds MP (2010) Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Funct Plant Biol 37:147–156. https://doi.org/10.1071/FP09121

    Article  Google Scholar 

  • Marschner H (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Elsevier, London

    Google Scholar 

  • Mokhtassi-Bidgoli A, AghaAlikhani M, Eyni-Nargeseh H (2021) Effects of nitrogen and water on nutrient uptake, oil productivity, and composition of Descurainia sophia. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-021-00633-7

    Article  Google Scholar 

  • Mondal N, Bhat KV, Srivastava PS (2010) Variation in fatty acid composition in Indian germplasm of sesame. J Am Oil Chem Soc 87:1263–1269. https://doi.org/10.1007/s11746-010-1615-9

    Article  CAS  Google Scholar 

  • Osama S, El Sherei M, Al-Mahdy DA, Bishr M, Salama O (2019) Effect of Salicylic acid foliar spraying on growth parameters, γ‑pyrones, phenolic content and radical scavenging activity of drought stressed Ammi visnaga L. plant. Ind Crops Prod 134:1–10. https://doi.org/10.1016/j.indcrop.2019.03.035

    Article  CAS  Google Scholar 

  • Pasban Eslam B, Monirifar H, Sadeghi Bakhtavari AR (2017) Morpho-physiological response of rapeseed (Brassica napus L.) genotypes to drought stress. Crop Breed J 7(1,2):49–56. https://doi.org/10.22092/cbj.2018.116331.1019

    Article  Google Scholar 

  • Pirasteh-Anosheh H, Saed-Moucheshi A, Pakniyat H, Pessarakli M (2016) Stomatal responses to drought stress. In: Parvaiz A (ed) Water stress and crop plants: a sustainable approach. Wiley, Chichester, pp 24–40

    Chapter  Google Scholar 

  • Rahimi-Moghaddam S, Eyni-Nargeseh H, Ahmadi SAK, Azizi K (2021) Towards withholding irrigation regimes and drought-resistant genotypes as strategies to increase canola production in drought-prone environments: a modeling approach. Agric Water Manag 243:106487. https://doi.org/10.1016/j.agwat.2020.106487

    Article  Google Scholar 

  • Ranjbar Fordoei A, Dehghani Bidgholi R (2016) Impact of salinity stress on photochemical efficiency of photosystem II, chlorophyll content and nutrient elements of nitere bush (Nitraria schoberi L.) plants. J Rangel Sci 6(1):3–9

    Google Scholar 

  • Shirani Rad AH, Ganj-Abadi F, Jalili EO, Eyni-Nargeseh H, Safavi Fard N (2021) Zn foliar spray as a management strategy boosts oil qualitative and quantitative traits of spring rapeseed genotypes at winter sowing dates. J Soil Sci Plant Nutr 21(2):1610–1620. https://doi.org/10.1007/s42729-021-00465-5

    Article  CAS  Google Scholar 

  • Singh S, Sinha S (2005) Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Safe 62:118–127. https://doi.org/10.1016/j.ecoenv.2004.12.026

    Article  CAS  Google Scholar 

  • de Souza JJP, de Mello Prado R, Soares MB, da Silva JLF, de Farias Guedes VH, dos Santos Sarah MM, Cazetta JO (2021) Effect of different foliar silicon sources on cotton plants. J Soil Sci Plant Nutr 21:95–103. https://doi.org/10.1007/s42729-020-00345-4

    Article  CAS  Google Scholar 

  • Tavakol E, Jakli B, Cakmak I, Dittert K, Karlovsky P, Pfohl K, Senbayram M (2018) Optimized potassium nutrition improves plant-water-relations of barley under PEG-induced osmotic stress. Plant Soil. https://doi.org/10.1007/s11104-018-3704-8

    Article  Google Scholar 

  • Wang SY, Galletta GJ (1998) Foliar application of potassium silicate induces metabolic changes in strawberry plants. J Plant Nutr 21:157–167

    Article  CAS  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo Sh (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390. https://doi.org/10.3390/ijms14047370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Cai D, Wang J, Cao J, Wen Y, He J, Zhao L, Wang D, Zhang S (2021) Physiological and anatomical changes in two rapeseed (Brassica napus L.) genotypes under drought stress conditions. Oil Crop Sci 6:97–104. https://doi.org/10.1016/j.ocsci.2021.04.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided for this survey by the Seed and Plant Improvement Institute (SPII), Karaj, Iran.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Hamed Eyni-Nargeseh: Software, Formal analysis, Writing–Original draft preparation, Amir Hosein Shirani Rad: Conceptualization, Methodology, Project administration, Writing–Original draft preparation, Saba Shiranirad: Measurements in laboratory.

Corresponding author

Correspondence to Amir Hosein Shirani Rad.

Ethics declarations

Conflict of interest

H. Eyni-Nargeseh, A.H. Shirani Rad and S. Shiranirad declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyni-Nargeseh, H., Shirani Rad, A.H. & Shiranirad, S. Does Potassium Silicate Improve Physiological and Agronomic Traits and Oil Compositions of Rapeseed Genotypes Under Well-Watered and Water-Limited Conditions?. Gesunde Pflanzen 74, 801–816 (2022). https://doi.org/10.1007/s10343-022-00652-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00652-z

Keywords

Schlüsselwörter

Navigation