Skip to main content

Advertisement

Log in

Bio-Boron Fertilizer Applications Affect Amino Acid and Organic Acid Content and Physiological Properties of Strawberry Plant

Einfluss der Düngung mit Bio-Bor auf den Gehalt an Aminosäuren und organischen Säuren sowie auf physiologische Eigenschaften von Erdbeerpflanzen

  • Original Article
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

The effects of boron and plant growth promoting bacteria (Bio-B) on the some of physiological parameters with amino acid and organic acid of strawberry cv. Fern were investigated under field conditions. The study treatments were soil, foliar, and soil + foliar applications as main plot and two Bio-B (control and plant growth promoting rhizobacteria; Azospirillum brasilense 1 × 109 cfu ml−1 + 10% boron as Di-SodyumOktaboratTetraHidrat) fertilizer applications as subplot in complete randomized block design with four replicates. Bio-B fertilizer was applied in three methods such as soil, foliar and soil + foliar application methods on strawberry. Two years data from the present study reported that the use of Bio-B significantly increased chlorophyll, photosynthesis, stomatal and membrane permeability, amino acid and organic acid of strawberry leaf. Soil + foliar applications of Bio-B fertilizer increased to strawberry yield compared to the control by 65.9%. Foliar applications of Bio-B fertilizer increased chlorophyll and stomatal permeability in comparison to the control by 17.62 and 56.52%, respectively. However, soil + foliar application of Bio-B fertilizer increased membrane permeability and photosynthesis compare to those under the control 24.80 and 23.32%, respectively. Amino acid content of strawberry was increased (23.45%) and organic acid amount was increased (23.45%) under soil application of Bio-B fertilizer compare to those under the control. The results of this study concluded that Bio-B fertilizer application was positively associated with strawberry yield and increased the potential to chlorophyll, photosynthesis, stomatal and membrane permeability, amino acid, organic acid content under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Brazilian. J Microbiol 39:423–426

    CAS  Google Scholar 

  • Andersen PC, Brodbeck BV, Oden S, Shriner A, Leite B (2007) Influence of xylem fluid chemistry on planktonic growth, biofilm formation and aggregation of Xylella fastidiosa. FEMS Microbiol Lett 274:10–217

    Article  CAS  Google Scholar 

  • Antoine FR, Wei CI, Littell RC, Marshall MR (1999) HPLC method for analysis of free amino acids in fish using o‑phthaldialdehyde precolumn derivatization. J Agr Food Chem 47:5100–5107

    Article  CAS  Google Scholar 

  • Aristoy MC, Toldra F (1991) Deproteinization techniques for HPLC amino acid analysis in fresh pork muscle and dry-cured ham. J Agric Food Chem 39:1792–1795

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Belitz HD, Grosch W, Schieberle P (2001) Lehrbuch der Lebensmittelchemie: 1.2 Aminosäuren, 5th edn. Springer, Berlin, pp 9–33

    Book  Google Scholar 

  • Borgen A (2004) Strategies for regulation of seed borne diseases in organic farming. Seed Test Int 127:19–21

    Google Scholar 

  • Borgen A, Kristensen L (2001) Effect of seed treatment with acetic acid in control of seed borne diseases. In: Biddle AJ (ed) Proceedings from BCPC symposium no. 76: “seed treatment: challenges & opportunities”. BCPC, Farnham, pp 135–140

    Google Scholar 

  • Bottini R, Cassan F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Bremner JM (1996) Nitrogen-total. In: Bartels JM, Bigham JM (eds) Chemical methods. Methods of soil analysis, vol 3. The Soil Science Society of America and the American Society of Agronomy, Madison, pp 1085–1121

    Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community com- position and diversity. Appl Environ Microbiol 74:738–744

    Article  CAS  PubMed  Google Scholar 

  • Camacho-Cristóbal JJ, Lunar L, Lafont F, Baumert A, González-Fontes A (2004) Boron deficiency causes accumulation of chlorogenic acid and caffeoyl polyamine conjugates in tobacco leaves. J Plant Physiol 161:879–881

    Article  CAS  PubMed  Google Scholar 

  • Chen FX, Liu XH, Chen LS (2005) Advances in research on organic acid metabolism in fruits. J Fruit Sci 22:526–531

    CAS  Google Scholar 

  • Chen Y, Cao S, Chai Y, Clardy J, Kolter R, Guo J, Losick R (2012) A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Mol Microbiol 85:418–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordenunsi BR, Nascimento JRO, Lajolo FM (2003) Physico-chemical changes related to quality of five strawberry fruit cultivars during cool-storage. Food Chem 83:167–173

    Article  CAS  Google Scholar 

  • Cordenunsi BR, Genovese MI, Nascimiento JRO, Hassimoto NMA, Santos RJ, Lajolo FM (2005) Effects of temperature on the chemical composition and antioxidant capacity of three strawberry cultivars. Food Chem 91:113–121

    Article  CAS  Google Scholar 

  • El-Shintinawy F (1999) Structural and functional damage caused by boron deficiency in sunflower leaves. Photosynthetica 36:565–573

    Article  CAS  Google Scholar 

  • Esitken A, Karlidag H, Ercisli S, Sahin F (2002) Effects of foliar application of Bacillus substilis Osu-142 on the yield, growth and control of shot-hole disease Coryneum blight of apricot. Gartenbauwissenschaft 67:139–142

    CAS  Google Scholar 

  • Esitken A, Karlidag H, Ercisli S, Turan M, Sahin F (2003) The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot Prunus armeniaca L. cv. Hacihaliloglu. Aust J Agric Res 54:377–380

    Article  Google Scholar 

  • Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria PGPB on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic 124:62–66

    Article  CAS  Google Scholar 

  • Fattah GM, Mohamedin AH (2000) Interactions between a vesicular-arbuscular mycorrhizal fungus Glomus intraradices and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol Fertil Soils 32:401–409

    Article  Google Scholar 

  • Galili G, Höfgen R (2002) Metabolic engineering of amino acids and storage proteins. Metab Eng 4:3–11

    Article  CAS  PubMed  Google Scholar 

  • Gao ZQ, Zhao CX, Cheng JJ, Zhang XC (2012) Tree structure and 3‑D distribution of radiation in canopy of apple trees with different canopy structures in China. Chin J Eco Agric 201:63–68

    Article  Google Scholar 

  • Giridara KS, Matta RA (2003) NaCl effects on proline metabolism in two high yielding genotypes of mulberry Morus alba L. with contrasting salt tolerance. Plant Sci 165:1245–1251

    Article  CAS  Google Scholar 

  • Gunes A, Ataoglu N, Turan M, Esitken A, Ketterings QM (2009) Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. J Plant Nutr Soil Sci 172:385–392

    Article  CAS  Google Scholar 

  • Han S, Chen L, Jiang H, Smith BR, Yang L, Xie C (2008) Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J Plant Physiol 165:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Henderson JW, Ricker RD, Bidlingmeyer BA, Woodward C (1999) Amino acid analysis using Zorbax Eclipse-AAA Columns and the Agilent 1200 HPLC. Rapid, Accurate, Sensitive, and Reproducible HPLC Analysis of Amino Acids. Agilent Technologies, Part No. 5980–1193E

  • Keutgen AJ, Pawelzik E (2008) Quality and nutritional value of strawberry fruit under long term salt stress. Food Chem 1074:1413–1420

    Article  CAS  Google Scholar 

  • Li H, Li TX, Fu G, Katulanda P (2013) Induced leaf intercellular CO2, photosynthesis, potassium and nitrate retention and strawberry early fruit formation under macronutrient limitation. Photosynth Res 115(2-3):101–114

    Article  CAS  PubMed  Google Scholar 

  • Lindemann B (2001) Receptors and transduction in taste. Nature 413:219–225

    Article  CAS  PubMed  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Ling N, Raza W, Ma J, Huang Q, Shen Q (2011) Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizo- sphere. Eur J Soil Biol 47:374–379

    Article  CAS  Google Scholar 

  • Lizot JF, Griboval B, Guenard M (2002) Mise au point dune technique de disinfection des semences applicable en agriculture biologique—Alternaria dauci sur semences de carottes. In: 2ème Conference internationale sur les moyens alternatifs de lutte contre les organisms nuisibles aux vegetaux Lille. vol 4

    Google Scholar 

  • Lopes da Silva SF, Escribano BMT, Perez AJJ, Rivas GJC, Santos BC (2007) Anthocyanin pigments in strawberry. LWT Food Sci Technol 40:374–382

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Marschner P, Crowley D, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261:199–208

    Article  CAS  Google Scholar 

  • Massonnet C, Regnard JL, Lauri PÉ, Costes E, Sinoquet H (2008) Contributions of foliage distribution and leaf functions to light interception, transpiration and photosynthetic capacities in two apple cultivars at branch and tree scales. Tree Physiol 28:665–678

    Article  CAS  PubMed  Google Scholar 

  • Matsubara Y, Ishigaki T, Koshikawa K (2009) Changes in free amino acid concentrations in mycorrhizal strawberry plants. Sci Hortic 119:392–396

    Article  CAS  Google Scholar 

  • McLean EO (1982) Soil pH and lime requirement. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, 2nd edn. Chemical and microbiological properties, vol 2. ASA SSSA Publisher, Madison, pp 199–224

    Google Scholar 

  • Micallef SA, Channer S, Shiaris MP, Colon CA (2009) Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal Behav 4:777–780

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhayay M, Ghosh P, Mondal TK (2013) Effect of boron deficiency on photosynthesis and antioxidant responses of young Tea Plantlets. Редколлегия 5:671–677

    Google Scholar 

  • Nelson DW, Sommers LE (1982) Organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, 2nd edn. Chemical and microbiological properties, vol 2. ASA SSSA Publisher, Madison, pp 574–579

    Google Scholar 

  • Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJP, Zucker CS (2002) An amino-acid taste receptor. Nature 416:199–202

    Article  CAS  PubMed  Google Scholar 

  • Nezarat S, Gholami A (2009) Screening plant growth promoting rhizobacteria for improving seed germination, transplant growth and yield of maize. Pakistan. J Biol Sci 121:26–32

    Google Scholar 

  • Návarová H, Bernsdorff F, Döring AC, Zeier J (2012) Pipecolic acid, an endogenous mediator of de-fense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123–5141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA, Washington, DC (Circ 939)

    Google Scholar 

  • Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizobacteria PGPR on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic 111:38–43

    Article  CAS  Google Scholar 

  • Pandey DK, Pandey N (2008) Screening of wheat genotypes for their susceptibility to boron deficiency. Res Environ Life Sci 1:37–42

    Google Scholar 

  • Rhoades JD (1996) Salinity: electrical conductivity and total dissolved solids. In: Bartels JM, Bigham JM (eds) Chemical methods, 2nd edn. Methods of soil analysis, vol 3. ASA SSSA Publisher Agronomy, Madison, pp 417–436

    Google Scholar 

  • Ricke SC (2003) Perspectives on the use of organic acids and short chain fatty acids as microbials. Poult Sci 82:632–639

    Article  CAS  PubMed  Google Scholar 

  • Rolin D, Pfeffer PE, Douds DD, Farrell HM, Shachar Y (2001) Arbuscular mycorrhizal symbiosis and phosphorus nutrition: effects on amino acid production and turnover in leek. Symbiosis 30:1–14

    CAS  Google Scholar 

  • Saia S, Ruisi P, Fileccia V, DiMiceli G, Amato G, Martinelli F (2015) Metabolomics suggests that soil inoculation with arbuscular mycorrhizal fungi decreased free amino acid content in roots of durum wheat grown under N‑limited, P‑rich field conditions. PLoS ONE. https://doi.org/10.1371/journal.pone.0129591

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawicka B, Michałek W (2008) Photosynthetic activity of Helianthus tuberosus L. depending on a soil and mineral fertilization. Pol J Soil Sci 41:209–222

    CAS  Google Scholar 

  • Sharma RR, Patel VB, Krishna H (2006) Relationship between light, fruit and leaf mineral content with albinism incidence in strawberry Fragaria x ananassa Duch. Sci Hortic 1091:66–70

    Article  CAS  Google Scholar 

  • Shaukat K, Affrasayab S, Hasnain S (2006a) Growth responses of Heliantus annus to plant growth promoting rhizobacteria used as a biofertilizer. J Agric Res 1:573–581

    Google Scholar 

  • Shaukat K, Affrasayab S, Hasnain S (2006b) Growth responses of Triticum aestivum to plant growth promoting rhizobacteria used as a biofertilizer. Res J Microbiol 1:330–338

    Article  CAS  Google Scholar 

  • Shi L, Chen B, Wang Z, Elias DA, Mayer MU, Gorby YA (2006) Isolation of high-affinity functional protein complex between OmcA and MtrC two outer membrane decaheme c‑type cytochromes of Shewanella oneidensis MR-1. J Bacteriol 188:4705–4714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sood SG (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. Microbiol Ecol 45:219–227

    Article  CAS  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190

    Article  Google Scholar 

  • Sudhakar P, Chattopadhyay GN, Gangwar SK, Ghosh JK (2000) Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry Morus alba. J Agric Sci 134:227–234

    Article  Google Scholar 

  • Sumner ME, Miller WP (1996) Cation exchange capacity and ex-change coefficients. In: Chemical methods, 2nd edn. Methods of Soil Analysis, vol 3. ASA SSSA Publisher, Madison, pp 1201–1230

    Google Scholar 

  • Thomas GW (1982) Exchangeable cations. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, 2nd edn. Chemical and microbiological properties, vol 2. ASA SSSA Publisher, Madison, pp 159–164

    Google Scholar 

  • Thomson VP, Cunningham SA, Ball MC, Nicotra AB (2003) Compensation for herbivory by Cucumis sativus through increased photosynthetic capacity and efficiency. Oecologia 134:167–175

    Article  PubMed  Google Scholar 

  • Turan M, Gulluce M, Von Wiren N, Sahin F (2012) Yield promotion and phosphorus solubilization by plant promoting rhizobacteria in extensive wheat production. J Plant Nutr Soil Sci 175:818–826

    Article  CAS  Google Scholar 

  • Turan M, Ekinci M, Yildirim E, Gunes A, Karagoz K, Kotan R, Dursun A (2014) Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage Brassica oleracea seedlings. Turk J Agric For 38:327–333

    Article  CAS  Google Scholar 

  • Vranova V, Rejsek K, Skene KR, Formanek P (2011) Nonprotein amino acids: plant, soil and ecosystem interactions. Plant Soil 342:31–48

    Article  CAS  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105(7):1073–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojcik P, Lewandowski M (2003) Effect of spray of calcium and boron on yield and quality of “Elsanta” strawberry. J Plant Nutr 3:671–682

    Article  CAS  Google Scholar 

  • Wolf B (1974) Improvements in the azomethine-H method for the determining of boron. Commun Soil Sci Plant Anal 5:39–44

    Article  CAS  Google Scholar 

  • Yamaya T, Matsumoto H (1989) Accumulation of asparagines in NaCl-stressed barley seedlings. Reports of the Ohara Institute for Agricultural Biology, Okayama University 19, pp 181–188

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Research and Development project of Turkish Ministry of Industry (Project number: 01194.STZ.2012-1) for their generous financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gunes.

Ethics declarations

Conflict of interest

N. Kitir, A. Gunes, M. Turan, E. Yildirim, B. Topcuoglu, M. Turker, E. Ozlu, M.R. Karaman and G. Fırıldak declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitir, N., Gunes, A., Turan, M. et al. Bio-Boron Fertilizer Applications Affect Amino Acid and Organic Acid Content and Physiological Properties of Strawberry Plant. Erwerbs-Obstbau 61, 129–137 (2019). https://doi.org/10.1007/s10341-018-0409-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-018-0409-3

Keywords

Schlüsselwörter

Navigation