Skip to main content
Log in

An assessment of the risk of Bt-cowpea to non-target organisms in West Africa

  • Review
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Cowpea (Vigna unguiculata Walp.) is the most economically important legume crop in arid regions of sub-Saharan Africa. Cowpea is grown primarily by subsistence farmers who consume the leaves, pods and grain on farm or sell grain in local markets. Processed cowpea foods such as akara (a deep-fat fried fritter) are popular in the rapidly expanding urban areas. Demand far exceeds production due, in part, to a variety of insect pests including, in particular, the lepidopteran legume pod borer (LPB) Maruca vitrata. Genetically engineered Bt-cowpea, based on cry1Ab (Event 709) and cry2Ab transgenes, is being developed for use in sub-Saharan Africa to address losses from the LBP. Before environmental release of transgenic cowpeas, the Bt Cry proteins they express need to be assessed for potential effects on non-target organisms, particularly arthropods. Presented here is an assessment of the potential effects of those Cry proteins expressed in cowpea for control of LPB. Based on the history of safe use of Bt proteins, as well as the fauna associated with cultivated and wild cowpea in sub-Saharan Africa results indicate negligible effects on non-target organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This review also considers the use of Cry2Ab, where appropriate, because a second-generation Bt-cowpea is under development which will use a cry2Ab gene for insect resistance management.

References

  • Adati T, Tamò M, Yusuf SR, Downham MCA, Singh BB, Hammond W (2007) Integrated pest management for cowpea–cereal cropping systems in the West African savannah. Int J Trop Insect Sci 27:123–137

    Article  Google Scholar 

  • Adati T, Tamò M, Koji S, Downham M (2012) Effect of migration and mating status of the legume pod borer, Maruca vitrata (Fabricius) (Lepidoptera: Crambidae) on the efficacy of synthetic sex pheromone traps in West Africa. In: Boukar O, Coulibaly O, Fatokun C, Lopez K, Tamò M (eds) Enhancing cowpea value chains through research advances, Proceedings of the 5th World Cowpea Research Conference. IITA, Ibadan, Nigeria, pp 260–272

  • Agunbiade TA, Coates BS, Kim KS, Forgacs D, Margam VM, Murdock LL, Ba MN, Binso-Dabire CL, Baoua I, Ishiyaku MF, Tamò M, Pittendrigh BR (2012) The spatial genetic differentiation of the legume pod borer, Maruca vitrata F. (Lepidoptera: Crambidae) populations in West Africa. Bull Entomol Res 102:589–599

    Article  PubMed  CAS  Google Scholar 

  • Agyen-Sampong M (1978) Pests of cowpea and their control in Ghana. In: Singh SR, vanEmdem HF, Taylor TA (eds) Pest of Grain Legumes: ecology and control. IITA, Ibadan, pp 85–92

    Google Scholar 

  • Akinfenwa S (1975) Biological study of Maruca testulalis (Geyer) (Lepidoptera: Pyralidae) in the Zaria area of northern Nigeria. M.Sc. Thesis, Ahmadu Bello University, Nigeria

  • Arodokoun DY, Tamò M, Cloutier C, Adeoti R (2003) The importance of alternative host plants for the annual cycle of the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Pyralidae). Insect Sci Appl 23:103–113

    Google Scholar 

  • Arodokoun DY, Tamò M, Cloutier C, Brodeur J (2006) Larval parasitoids occurring on Maruca vitrata Fabricius (Lepidoptera: Pyralidae) in Benin, West Africa. Agr Ecosyst Environ 113:320–325

    Article  Google Scholar 

  • Asante SK, Jackai LEN, Tamò M (2000) Efficiency of Gryon fulviventris (Hymenoptera: Scelionidae) as an Egg Parasitoid of Clavigralla tomentosicollis (Hemiptera: Coreidae) in Northern Nigeria. Environ Entomol 29: 815–821

  • Asiwe JAN (2009). Insect mediated outcrossing and geneflow in cowpea (Vigna unguiculata (L.) Walp): implication for seed production and provision of containment structures for genetically transformed cowpea. Afr J Biotechnol 8(2):226–230, ISSN 1684–5315 © 2009 Academic Journals

  • Asiwe JAN (2009b) Insect mediated outcrossing and geneflow in cowpea (Vigna unguiculata (L.) Walp): Implication for seed production and provision of containment structures for genetically transformed cowpea. Afr J Biotechnol 8:226–230

    Google Scholar 

  • Atachi P, Ahohuendo BC (1989) Comparaison de quelques paramètres caractéristiques de la dynamique des populations entre Megalurothrips sjostedti (Trybom) et Maruca testulalis (Geyer) sur une même plante hôte, le niébé. Insect Sci Appl 10:187–197

    Google Scholar 

  • Atachi P, Djihou ZC (1994) Record of the host plants of Maruca testulalis (Geyer) (Lepidoptera: Pyralidae) in the Republic of Benin. Ann Soc Entomol Fr 30:169–174

    Google Scholar 

  • Atachi P, Gnanvossou D (1989) Dynamique quantitative des populations animales: recherches préliminaires à une étude comparée des dynamiques de biomasses, d’effectifs et de production chez Maruca testulalis (Geyer) (Lep. Pyralidae) en culture de niébé dans un agrosystème du Sud Benin. Acta Oecol 10:221–239

    Google Scholar 

  • Addae PC, Ishyiaku M, Tignegre JB, Bationo J, Atokple IDK, Saba M, Onyekachi FN, Lawan M, Huesing J, Beach L, Higgins TJV (2017) Efficacy of cry1Ab gene to control the pod borer Maruca vitrata in cowpea. Submitted

  • Ba NM, Margam VM, Dabire-Binso CL, Sanon A, McNeil J, Murdock LL, Pittendrigh BR (2009) Seasonal and regional distribution of the cowpea pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae), in Burkina Faso. Int J Trop Insect Sci 29:109–113

    Article  Google Scholar 

  • Babendreier D, Reichhard B, Romeis J, Bigler F (2008) Impact of insecticidal proteins expressed in transgenic plants on bumblebee micro-colonies. Entomol Exp Appl 126:148–157

    Article  CAS  Google Scholar 

  • Bal AB (1991) Action threshold for flower thrips on cowpea (Vigna unguiculata (L.) Walp.) in Senegal. Trop Pest Manage 37:363–367

    Article  Google Scholar 

  • Bottenberg H, Tamò M, Arodokoun D, Jackai LEN, Singh BB, Youm O (1997) Population dynamics and migration of cowpea pests in northern Nigeria: implications for integrated pest management. In: Singh BB, Mohan-Raj DR, Dashiell KE, LE Jackai N (eds) Advances in Cowpea Research. International Institute of Tropical Agriculture and Japan International Center for Agricultural Sciences, Ibadan, pp 271–284

    Google Scholar 

  • Bottenberg H, Tamò M, Singh BB (1998) Occurrence of phytophagous insects on wild Vigna sp. and cultivated cowpea: comparing the relative importance of host-plant resistance and millet intercropping. Agr Ecosyst Environ 70:217–229

    Article  Google Scholar 

  • Bruner SC (1930) Report of the department of entomology and phytopathology for 1929–1930. Experiment Station of Santiago de Las Vegas, Cuba, p 74

    Google Scholar 

  • CERA (2010) A review of the environmental safety of the Cry1Ac protein. Center for Environmental Risk Assessment. ILSI Research Foundation 1–18

  • CERA (2011) A review of the environmental safety of the Cry1Ab Protein. Center for Environmental Risk Assessment. ILSI Research Foundation 1–17

  • CERA (2013) A Review of the Environmental Safety of the Cry2Ab Protein. Center for Environmental Risk Assessment. ILSI Research Foundation 1–25

  • Chi Y, Sakamaki Y, Tsuda K, Kusigemachi K (2003) The seasonal abundance of the Legume Pod Borer, Maruca vitrata in Kagoshima, Japan. Mem Fac Agr Kagoshima Univ 38:41–44

    Google Scholar 

  • Chi Y, Sakamaki Y, Tsuda K, Kusigemati K (2005) Effect of temperature on oviposition and adult longevity of the legume pod borer, Maruca vitrata (Fabricius) (Lepidoptera: Crambidae). Appl Entomol Zool 49:29–32

    Article  Google Scholar 

  • Corey D, Kambhampati S, Wilde G (1998) Electrophoretic analysis of Orius insidiosus (Hemiptera: Anthocoridae) feeding habits in field corn. J Kansas Entomol Soc 71:11–17

    Google Scholar 

  • Coulibaly S, Pasquet RS, Papa R, Gepts P (2002) AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. reveals extensive gene flow between wild and domesticated types. Theor Appl Genet 104:358–366

    Article  PubMed  CAS  Google Scholar 

  • Dabire LCB (2001) Etude de quelques parametres biologiques et ecologiques de Clavigralla tomentosicollis Stal 1855 (Hemiptera: Coreidae), punaise suceuse des gousses de niebe [Vigna unguiculata (L.) Walp.] dans une perspective de lutte durable contre l’insecte au Burkina Faso. PhD Thesis dissertation, Universite de Cocody, Abidjan, Cote d’Ivoire

  • Donald CE, Scott RP, Blaustein KL, Halbleib ML, Sarr M, Jepson PC, Anderson KA (2016) Silicone wristbands detect individuals’ pesticide exposures in West Africa. R Soc Open Sci 3:160433. https://doi.org/10.1098/rsos.160433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dreyer H (1994) Seed damaging field pests of cowpea (Vigna unguiculata) in southern Benin, with special reference to Clavigralla tomentosicolis Stal (Het., Coreidae). PhD Thesis No. 10894, Swiss Federal Institute of Technology Zurich

  • Duan JJ, Huesing J, Teixeira D (2007) Development of tier-I toxicity assays for Orius insidiosus (Heteroptera: Anthocoridae) for assessing the risk of plant-incorporated protectants to nontarget heteropterans. Environ Entomol 36:982–988

    Article  PubMed  CAS  Google Scholar 

  • Duan JJ, Marvier M, Huesing JE, Dively G, Huang ZY (2008) A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS ONE. https://doi.org/10.1371/journal.pone.0001415

    Article  PubMed  PubMed Central  Google Scholar 

  • Echendu TNC, Akingbohungbe AE (1990) Intensive free–choice and no choice cohort tests for evaluating resistance to Maruca testulalis (Lepidoptera:Pyralidae) in cowpea. Bull Entomol Res 80:289–293

    Article  Google Scholar 

  • EFSA (2009) Scientific Opinion of the Panel on Genetically Modified Organisms on applications (EFSA-GMORXMON810) for the renewal of authorisation for the continued marketing of (1) existing food and food ingredients produced from genetically modified insect resistant maize MON810; (2) feed consisting of and/or containing maize MON810, including the use of seed for cultivation; and of (3) food and feed additives and feed materials produced from maize MON810, all under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 1149:1–85

    Google Scholar 

  • Ezueh MI (1981) Nature and significance of preflowering damage by thrips to cowpea. Entomol Exp Appl 29:305–312

    Article  Google Scholar 

  • FAOSTAT (2017). http://www.fao.org/faostat/en/#data/QC/visualize (retrieved on 07 September 2017)

  • Fatokun CA (2002) Breeding cowpea for resistance to insect pests: attempted crosses between cowpea and Vigna vexillata. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamò M (eds) Challenges and opportunities for enhancing sustainable cowpea production, Proceedings of the 3rd World Cowpea Conference. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 52–61

  • Fatokun CA, Ng Q (2007) Outcrossing in cowpea. J Food Agr Environ 5:334–338

    Google Scholar 

  • Federici B (2007) Bacteria as biological control agents for insects: economics, engineering and environmental safety. In: Vurro M, Gressel J (eds) Novel Biotechnologies for Biocontrol agent enhancement and management. Springer, Berlin, pp 25–51

    Chapter  Google Scholar 

  • Firempong S, Mangalit H (1990) Spatial distribution of Maruca testululis larvae on cowpea, and a sequential sampling plan for estimating larval densities. Insect Sci Appl 11:217–222

    Google Scholar 

  • Fohouo FNT, Ngakou A, Kengni BS (2009) Pollination and yield responses of cowpea (Vigna unguiculata L. Walp.) to the foraging activity of Apis mellifera adansonii (Hymenoptera: Apidae) at Ngaoundéré (Cameroon). Afr J Biotechnol 8:1988–1996

    Google Scholar 

  • Gblagada CCS (1982) Inventaire des parasites lavaires de Maruca testulalis (Geyer) sur le niebe (Vigna unguiculata (L.) Walp) et sur le pois d’angole (Cajanus cajan L. Millsp.). MS Dissertation Universite Abomey-Calavi, Benin

  • Hill RA, Sendashonga C (2003) General principles for risk assessment of living modified organisms: lessons from chemical risk assessment. Environ Biosafety Res 2:81–88

    Article  PubMed  Google Scholar 

  • Hofmann C, Vanderbruggen H, Höfte H, Van Rie J, Jansens S, Van Mellaert H (1988) Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc Natl Acad Sci 85:7844–7848

    Article  PubMed  CAS  Google Scholar 

  • Huang CC, Peng WK (2001) Emergence, mating and oviposition of the bean pod borer, Maruca vitrata (F.) (Lepidoptera: Pyralidae). Formosan Entomol 21:37–45

    Google Scholar 

  • Huesing J, Romeis J, Ellstrand N et al (2011) Regulatory considerations surrounding the deployment of Bt-expressing cowpea in Africa: report of the deliberations of an expert panel. GM Crops 2:211–224

    Article  PubMed  Google Scholar 

  • Huignard J, Leroi B, Alzouma I, Germain JF (1985) Oviposition and development of Bruchidius atrolineatus and Callosobruchus maculatus (Coleoptera: Bruchidae) in Vigna unguiculata cultures. Insect Sci Appl 6:691–699

    Google Scholar 

  • Ige OE, Olotuah OF, Akerele V (2011) Floral biology and pollination ecology of cowpea (Vigna unguiculata L. Walp). Modern Appl Sci 5:74–82

    Google Scholar 

  • Jackai LEN, Adalla CB (1997) Pest management practices in cowpea: a review. In: Singh BB, Mohan-Raj DR, Dashiell KE, Jackai LEN (eds) Advances in cowpea research. International Institute of Tropical Agriculture and Japan International Center for Agricultural Sciences, Ibadan, pp 240–258

    Google Scholar 

  • Jackai LEN, Daoust RA (1986) Insect pests of cowpeas Ann Rev Entomol 31:95–119

    Article  Google Scholar 

  • Jackai LEN, Ochieng RS, Raulston JR (1990) Mating and oviposition behavior of the legume pod borer, Maruca testulalis. Entomol Exp Appl 59:179–186

    Article  Google Scholar 

  • Jackai LEN, Padulosi S, Ng Q (1996) Resistance to the legume pod borer, Maruca vitrata Fabricius, and the probable modalities involved in wild Vigna. Crop Prot 15:753–761

    Article  Google Scholar 

  • Jepson PC, Guzy M, Blaustein K, Sow M, Sarr M, Mineau P, Kegley S (2014) Measuring pesticide ecological and health risks in West African agriculture to establish an enabling environment for sustainable intensification. Phil Trans R Soc B 369:2013049. https://doi.org/10.1098/rstb.2013.0491

    Article  Google Scholar 

  • Jiang XF, Zhang L, Yang H, Sappington TH, Cheng Y, Luo LZ (2016) Biocontrol of the oriental armyworm, Mythimna separata by the tachinid fly Exorista civilis is synergized by Cry1Ab protoxin. Sci Rep 6:26873. https://doi.org/10.1038/srep26873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalaitzandonakes N, Alston JM, Bradford KJ (2007) Compliance costs for regulatory approval of new biotech crops. Nat Biotechnol 25:509–511

    Article  PubMed  CAS  Google Scholar 

  • Konrad R, Ferry N, Gatehouse AMR, Babendreier D (2008) Potential effects of oilseed rape expressing Oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee Osmia bicornis. PLoS ONE. https://doi.org/10.1371/journal.pone.0002664

    Article  PubMed  PubMed Central  Google Scholar 

  • Kouadio D, Echikh N, Toussaint A, Pasquet RS, Baudoin JP (2007) Organisation du pool génique de Vigna unguiculata(L.) Walp.: croisements entre les formes sauvages et cultivées du niébé. Biotechnol Agron Soc Environ 11:47–57

    Google Scholar 

  • Krishnamurthy B (1936) The Avare pod borers, a new method of control. Mysore Agricultural Calendar and Year Book, Bangalore

    Google Scholar 

  • Kumar R, Tian JC, Naranjo SE, Shelton AM (2014) Effects of Bt cotton on Thrips tabaci (Thysanoptera: Thripidae) and its predator, Orius insidiosus (Hemiptera: Anthocoridae). J Econ Entomol 107:927–932

    Article  PubMed  Google Scholar 

  • Langyintuo A, Lowenberg-DeBoer J (2006) Potential regional trade implications of adopting Bt cowpea in West and Central Africa. Ag Bio Forum 9:111–120

    Google Scholar 

  • Langyintuo AS, Lowenberg-DeBoer J, Faye M, Lambert D, Ibro G, Moussa B, Kergna A, Kushwaha S, Musa S, Ntoukam G (2003) Cowpea supply and demand in West and Central Africa. Field Crop Res 82:215–231

    Article  Google Scholar 

  • Lawo NC, Wäckers FL, Romeis J (2009) Indian Bt Cotton varieties do not affect the performance of cotton Aphids. PLoS One 4:e4804. https://doi.org/10.1371/journal.pone.0004804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Meissle M, Romeis J (2008) Consumption of Bt maize pollen expressing Cry1Ab or Cry3Bb1 does not harm adult green lacewings, Chrysoperla carnea (Neuroptera: Chrysopidae). PLoS One 3(8):e2909. https://doi.org/10.1371/journal.pone.0002909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Zhang Q, Liu Q, Meissle M, Yang Y, Wang Y, Hua H, Chen X, Peng Y, Romeis J (2017) Bt rice in China—focusing the nontarget risk assessment. Plant Biotechnol J 15:1340–1345

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao CT, Lin CS (2000) Occurrence of the legume pod borer, Maruca testullis, Geyer (Lepidoptera: Pyralidae) on cowpea (Vigna unguiculata Walp) and its insecticidal application trial. Plant Prot Bull 42:213–222

    CAS  Google Scholar 

  • Lu PF, Qiao HL, Wang XP, Wang XQ, Lei CL (2007) The emergence and mating rhythms of the legume pod borer, Maruca vitrata (Fabricius, 1787) (Lepidoptera: Pyralidae). Pan-Pac Entomol 83:226–234

    Article  Google Scholar 

  • Lumbierres B, Albajes R, Pons X (2012) Positive effect of Cry1Ab-expressing Bt maize on the development and reproduction of the predator Orius majusculus under laboratory conditions. Biol Control 63:150–156

    Article  CAS  Google Scholar 

  • Lundgren JG, Fergen JK, Riedell WE (2008) The influence of plant anatomy on oviposition and reproductive success of the omnivorous bug Orius insidiosus. Anim Behav 75:1495–1502

    Article  Google Scholar 

  • Margam VM, Coates BS, Ba MN, Sun W, Binso-Dabire CL et al (2011a) Geographic distribution of phylogenetically-distinct legume pod borer, Maruca vitrata (Lepidoptera: Pyraloidea: Crambidae). Mol Biol Rep 38:893–903

    Article  PubMed  CAS  Google Scholar 

  • Margam VM, Coates BS, Hellmich RL, Agunbiade T et al (2011b) Mitochondrial genome sequence and expression profiling for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae). PLoS ONE. https://doi.org/10.1371/journal.pone.0016444

    Article  PubMed  PubMed Central  Google Scholar 

  • Margam VM, Coates BS, Bayles DO et al. (2011c) Transcriptome sequencing, and rapid development and application of SNP markers for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae) PLoS One. https://doi.org/10.1371/journal.pone.0021388

  • Marvier M, McCreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of Bt cotton and maize on non-target invertebrates. Science 316:1475–1477

    Article  PubMed  CAS  Google Scholar 

  • Meagher RL, Nagoshi RN, Stuhl C, Mitchell ER (2004). Larval development of Fall Armyworm (Lepidoptera: Noctuidae) on different crop plants. Florida Entomol 87(4):454–460. Doi: 10.1653/0015-4040(2004)087[0454:LDOFAL]2.0.CO;2

  • Mendelsohn M, Kough J, Vaituzis Z, Matthews K (2003) Are Bt crops safe? Nat Biotechnol 21:1003–1009

    Article  PubMed  CAS  Google Scholar 

  • Murdock LL, Coulibaly O, Higgins TJV, Huesing JE, Ishiyaku MF, Sithole-Niang I (2008) Cowpea: Legume grains and forages. In: Kole C, Hall TC (eds) A compendium of transgenic crop plants. Blackwell Publishing, Oxford, pp 23–56

    Chapter  Google Scholar 

  • Naranjo SE (2009) Impacts of Bt crops on non-target invertebrates and insecticide use patterns. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 4:23. https://doi.org/10.1079/PAVSNNR20094011

    Article  Google Scholar 

  • Naveen V, Naik MI, Manjunatha M, Shivanna BK, Sridhar S (2009) Biology of legume pod borer, Maruca testulalis Geyer on cowpea. Karnataka J Agr Sci 22:668–669

    Google Scholar 

  • Ndoye M (1978) Pests of cowpea and their control in Senegal. In: Singh SR, Van Emden HF, Taylor TA (eds) Pests of grain legumes: ecology and control. International Institute of Tropical Agriculture, Ibadan, pp 113–115

    Google Scholar 

  • Niu L, Ma Y, Mannakkara A, Zhao Y, Ma W, Lei C, Chen L (2013) Impact of single and stacked insect-resistant bt-cotton on the honey bee and silkworm. PLoS One 8(9):e72988. https://doi.org/10.1371/journal.pone.0072988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ochieng RS, Okeyo-Owuor JB, Dabrowski ZT (1981) Studies on the legume pod borer, Maruca-Testulalis (Geyer): mass rearing on natural food. Insect Sci Applic 1:269–272

    Google Scholar 

  • OECD (2007) Consensus document on safety information on transgenic plants expressing Bacillus thuringiensis. OECD Environment, Health and Safety Publications Series on Harmonization of Regulatory Oversight in Biotechnology. ENV/JM/MONO (2007)14: OECD 2007

  • Ofuya TI (1987) A population explosion of Aphis craccivora Koch (Homoptera: Aphididae) in cowpeas protected with cypermethrin. FAO Plant Prot Bull 35:75–77

    Google Scholar 

  • Ofuya TI (1989) The effect of pod growth stages in cowpea on aphid reproduction and damage by the cowpea aphid, Aphis craccivora (Homoptera: Aphididae). Ann Appl Biol 115:563–566

    Article  Google Scholar 

  • Okeyo-Owuor JB, Ochieng R (1981) Studies on the legume pod-borer Maruca testululis (Geyer)–1: Life cycle and behavior. Insect Sci Appl 1:263–268

    Google Scholar 

  • Okeyo-Owuor JB, Oloo GW, Agwaro PO (1991) Natural enemies of the legume pod borer, Maruca testulalis Geyer (Lepidoptera: Pyralidae) in small scale farming systems of western Kenya. Insect Sci Appl 12:35–42

    Google Scholar 

  • Okwakpam BA, Youdeowei A (1980) The annotated key to four species of thrips (Thysanoptera) attacking edible legumes in Nigeria. Bull IFAN 42:157–165

    Google Scholar 

  • Olaifa JI, Akingbohungbe AE (1981) Aspects of the biology of the black cowpea moth, Cydia ptychora (Lepidoptera: Tortricidae) related to host plant phenology. Ann Appl Biol 97:129–134

    Article  Google Scholar 

  • Onstad DW, Kang J, Ba NM, Tamò M, Jackai L, Dabire C, Pittendrigh BR (2012) Modeling evolution of resistance by Maruca vitrata (Lepidoptera: Crambidae) to transgenic insecticidal cowpea in Africa. Environ Entomol 41:1255–1267

    Article  PubMed  CAS  Google Scholar 

  • Ouedraogo AP, Sou S, Sanon A, Monge JP, Huignard J, Tran MD, Credland PF (1996) Influence of temperature and humidity on populations of Callosobruchus maculatus (Coleoptera: Bruchidae) and its parasitoid Dinarmus basalis (Pteromalidae) in two zones of Burkina Faso. Bull Entomol Res 86:695–702

    Article  Google Scholar 

  • Parh IA, Taylor TA (1981) Studies on the life cycle of the cicadellid bug Empoasca dolichi Paoli, in Southern Nigeria. J Nat Hist 15:829–835

    Article  Google Scholar 

  • Pasquet R, Pittendrigh B, Ishiyaku M, Baoua I, Dabire C, Ba M, Huesing J, Murdock L (2007) Addressing gene flow issues in cowpea for West Africa. North Cent Weed Sci Soc Proc 62:81

    Google Scholar 

  • Pasquet RS, Peltier A, Hufford MB et al (2008) Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc Natl Acad Sci USA 105:13456–13461

    Article  PubMed  CAS  Google Scholar 

  • Periasamy M, Schafleitner R, Muthukalingan K, Ramasamy S (2015) Phylogeographical structure in mitochondrial DNA of legume pod borer (Maruca vitrata) population in tropical Asia and sub-Saharan Africa. PLoS ONE. https://doi.org/10.1371/journal.pone.0124057

    Article  PubMed  PubMed Central  Google Scholar 

  • Pigott CR, Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 71:255–281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Popelka JC, Gollasch S, Moore A, Molvig L, Higgins TJV (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission to progeny. Plant Cell Rep 25:304–312

    Article  PubMed  CAS  Google Scholar 

  • Raen AZ, Dang C, Wang F, Peng YF, Ye GY (2016) Thrips-mediated impacts from transgenic rice expressing Cry1Ab on ecological fitness of non-target predator Orius tantilus (Hemiptera: Anthocoridae). J Integr Agri 15:2059–2069

    Article  CAS  Google Scholar 

  • Raheja AJ (1974) Report on the insect pests of grain legumes in northern Nigeria. In: Proceedings, 1st IITA Grain Legume Improvement Workhop. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 295–299

  • Raybould A (2007a) Environmental risk assessment of genetically modified crops: general principles and risks to non-target organisms. BioAssay 2:8

    Google Scholar 

  • Raybould A (2007b) Ecological versus ecotoxicological methods for assessing the environmental risks of transgenic crops. Plant Sci 173:589–602

    Article  CAS  Google Scholar 

  • Raybould A (2010) Reducing uncertainty in regulatory decision-making for transgenic crops. More ecological research or clearer environmental risk assessment? GM Crops 1:25–31

    Article  PubMed  Google Scholar 

  • Raybould A, Quemada H (2010) Bt crops and food security in developing countries: realised benefits, sustainable use and lowering barriers to adoption. Food Secur 2:247–259

    Article  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71

    Article  PubMed  CAS  Google Scholar 

  • Romeis J, Bartsch D, Bigler F et al (2008) Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat Biotechnol 26:203–208

    Article  PubMed  CAS  Google Scholar 

  • Romeis J, Lawo NC, Raybould A (2009) Making effective use of existing data for case-by-case risk assessments of genetically engineered crops. J Appl Entomol 133:571–583

    Article  Google Scholar 

  • Romeis J, Hellmich R, Candolfi M et al (2011) Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants. Transgenic Res 20:1–22

    Article  PubMed  CAS  Google Scholar 

  • Romeis J, Raybould A, Bigler F, Candolfi M, Hellmich R, Huesing J, Shelton A (2013) Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating transgenic crops. Chemosphere 90:901–909

    Article  PubMed  CAS  Google Scholar 

  • Romeis J, Meissle M, Alvarez-Alfageme F, Bigler F, Bohan DA, Devos Y, Malone LA, Pons X, Rauschen S (2014a) Potential use of an arthropod database to support the non-target risk assessment and monitoring of transgenic plants. Trangenic Res 23:995–1013

    Article  CAS  Google Scholar 

  • Romeis J, Meissle M, Naranjo SE, Li Y, Bigler F (2014b) The end of a myth-Bt (Cry1Ab) maize does not harm green lacewings. Front Plant Sci 5:391. https://doi.org/10.3389/fpls.2014.00391

    Article  PubMed  PubMed Central  Google Scholar 

  • Salifu AB (1992) Some aspects of the biology of the bean flower thrips Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae) with reference to economic injury levels on cowpea (Vigna unguiculata (L.) Walp). Rev Zool Afr 106:451–459

    Google Scholar 

  • Sanon A, Dabiré C, Ouedraogo AP, Huignard J (2005) Field occurrence of bruchid pests of cowpea and associated parasitoids in a Sub humid zone of Burkina Faso: Importance of the infestation of two cowpea varieties at harvest. J Plant Pathol 4:14–20

    Article  Google Scholar 

  • SCBD (Secretariat of the Convention on Biological Diversity) (2000) Cartagena protocol on biosafety to the convention on biological diversity: text and annexes. SCBD, Montreal

    Google Scholar 

  • Shimada N, Miyamoto K, Kanda K, Murata H (2006a) Bacillus thuringiensis insecticidal Cry1Ab toxin does not affect the membrane integrity of the mammalian intestinal epithelial cells: An in vitro study. In Vitro Cell Dev-An 42:45–49

    CAS  Google Scholar 

  • Shimada N, Murata H, Mikami O et al (2006b) Effects of feeding calves genetically modified corn Bt11: a clinicobiochemical study. J Vet Med Sci 68:1113–1115

    Article  PubMed  CAS  Google Scholar 

  • Singh SR, Allen DR (1980) Pests, diseases, resistance, and protection in cowpea. In: Summerfield RJ, Bunting AH (eds) Advances in Legume Science. HMSO, London, pp 419–443

    Google Scholar 

  • Singh SR, Jackai LEN (1985) Insect pests of cowpeas in Africa: their life cycle, economic importance and potential for control. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 217–231

    Google Scholar 

  • Singh SR, Jackai LEN (1988) Mini Review. The legume pod-borer, Maruca testulalis (Geyer): Past, present and future research. Insect Sci Appl 9:1–5

    Google Scholar 

  • Singh SR, Van Emden HF (1979) Insect pests of grain legumes. Annu Rev Entomol 24:255–278

    Article  Google Scholar 

  • Singh SR, Jackai LEN, Dos Santos JHR, Adalla CB (1990) Insect pests of cowpea. In: Singh SR (ed) Insect pests of tropical food legumes. Wiley, Chichester, pp 43–89

    Google Scholar 

  • Srinivasan R (2008) Susceptibility of legume pod borer (LPB), Maruca vitrata to δ-endotoxins of Bacillus thuringiensis (Bt) in Taiwan. J Invert Path 97:79–81

    Article  CAS  Google Scholar 

  • Suh JB, Jackai LEN, Hammond WNO (1986) Observations on pod sucking bug populations on cowpea at Mokwa, Nigeria. Trop Grain Legume Bull 33:17–19

    Google Scholar 

  • Tamò M, Baumgaertner J, Delucchi V, Herren HR (1993a) Assessment of key factors responsible for the pest status of the bean flower thrips Megalurothrips sjostedti (Thysanoptera, Thripidae) in West Africa. Bull Entomol Res 83:251–258

    Article  Google Scholar 

  • Tamò M, Baumgaertner J, Arodokoun DY (1993b) The spatio temporal distribution of Megalurothrips sjostedti (Thysanoptera, Thripidae) life stages on cowpea, and development of sampling plans. Bull Soc Entomol Suisse 66:15–34

    Google Scholar 

  • Tamò M, Srinivasan R, Dannon E, Agboton C, Datinon B, Dabire C, Baoua I, Ba MN, Haruna B, Pittendrigh BR (2012) Biological control: a major component for the long-term cowpea pest Management strategy. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamò M (eds) Challenges and opportunities for enhancing sustainable cowpea production, Proceedings of the 3rd World Cowpea Conference. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 249–259

  • Tamò M, Pittendrigh BR, Miresmailli S, Font V, Blalock B, Dannon E, Datinon B, Agyekum M, Donovan C, Biaou E (2016) From biocontrol to precision-IPM in Africa: Challenges and opportunities. International Congress of Entomology, Orlando, Florida, 24–28 Sept, 2016. Abstract 0644: https://doi.org/10.1603/ice.2016.95128

  • Taylor TA (1967) The bionomics of Maruca testululis Gey. (Lepidoptera: Pyralidae), a major pest of cowpeas in Nigeria. J West Africa Sci Assoc 12:111–129

    Google Scholar 

  • Taylor TA (1978) Maruca testulalis, an important pest of tropical grain. In: Singh SR, Van Emden HF, Taylor TA (eds) Pests of grain legumes: ecology and control. Academic Press, London, pp 193–200

    Google Scholar 

  • Tian J-C, Wang X-P, Long L-P, Romeis J, Naranjo SE, Hellmich RL et al (2013) Bt crops producing Cry1Ac, Cry2Ab and Cry1F do not harm the green Lacewing. Chrysoperla rufilabris. PLoSOne 8(3):e60125. https://doi.org/10.1371/journal.pone.0060125

    Article  CAS  Google Scholar 

  • Traore F, Ba NM, Dabire-Binso CL, Sanon A, Pittendrigh BR (2014) Annual cycle of the legume pod borer Maruca vitrata Fabricius (Lepidoptera: Crambidae) in southwestern Burkina Faso. Arthropod-Plant Inte 8:155–162

    Article  Google Scholar 

  • USEPA (2007) White paper on tier-based testing for the effects of proteinaceous insecticidal plant-incorporated protectants on non-target arthropods for regulatory risk assessments. Rose R. Ed. Washington, DC: US Environmental Protection Agency Washington, DC. https://www.epa.gov/sites/production/files/2015-09/documents/tier-based-testing.pdf

  • USEPA (2010) United States Environmental Protection Agency Biopesticide Registration Document Cry1Ab and Cry1F Bacillus thuringiensis (Bt) Corn Plant-Incorporated Protectants https://www3.epa.gov/pesticides/chem_search/reg_actions/pip/cry1f-cry1ab-brad.pdf

  • USEPA (2011) United States Environmental Protection Agency Biopesticide Registration Document Bacillus thuringiensis Cry1A.105 and Cry2Ab2 Insecticidal Proteins and the Genetic Material Necessary for Their Production in Corn [PC Codes 006515 (Cry2Ab2), 006514 (Cry1A.105)]. https://www3.epa.gov/pesticides/chem_search/reg_actions/pip/mon-89034-brad.pdf

  • Usua EJ, Singh SR (1979) Behavior of cowpea pod borer, Maruca testulalis Geyer. Nigerian J Entomol 3:231–239

    Google Scholar 

  • Van Rie J, Jansens S, Hofte H, Degheele D, Van Mellaert H (1989) Specificity of Bacillus thuringiensis δ-endotoxins. Eur J Biochem 186:239–247

    Article  PubMed  Google Scholar 

  • Van Rie J, Jansens S, Hofte H, Degheele D, Van Mellaert H (1990) Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl Environ Microbiol 56:1378–1385

    PubMed  PubMed Central  Google Scholar 

  • Wolcott GN (1933) The Lima bean pod borer caterpillars of Puerto Rico. J Dept Agr Puerto Rico 17:241–255

    Google Scholar 

  • Wolfenbarger LL, Naranjo SE, Lundgren JG, Bitzer RJ, Watrud LS (2008) Bt crop effects on functional guilds of non-target arthropods: A meta-analysis. PLoS One 3(5):e2118. https://doi.org/10.1371/journal.pone.0002118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolfersberger M, Hofmann C, Luthy P (1986) Bacterial Protein Toxins. In: Falmagne P, Alouf JE, Fehrenbach FJ Jeljaszewicz J, Thelestam M (eds). Fischer, New York, 237–238

  • Zhao Y, Zhan S, Luo JY, Wang CY, Lv LM, Wang XP, Cui JJ, Lei CL (2016) Bt proteins Cry1Ah and Cry2Ab do not affect cotton aphid Aphis gossypii and ladybeetle Propylea japonica. Sci Rep 6:20368. https://doi.org/10.1038/srep20368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Agriculture Foreign Agriculture Service (USDA/FAS) Norman E. Borlaug International Agricultural Science and Technology Fellowship Program (Borlaug Fellowship Program) under Sponsor Award/Grant Number: 58-3148-2-188/106117 to Purdue University. The award was to LLM through Purdue University and administered through International Programs in Agriculture. The authors are also grateful to the African Agriculture Technology Foundation (AATF) for supporting the Bt-cowpea project, which generated the data on Cry1Ab protein expression in cowpea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry R. Pittendrigh.

Additional information

Communicated by N. Desneux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ba, M.N., Huesing, J.E., Tamò, M. et al. An assessment of the risk of Bt-cowpea to non-target organisms in West Africa. J Pest Sci 91, 1165–1179 (2018). https://doi.org/10.1007/s10340-018-0974-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-018-0974-0

Keywords

Navigation