Skip to main content

Microbial Insecticides: Food Security and Human Health

  • Chapter
Management of Microbial Resources in the Environment

Abstract

Sustainable agricultural systems must be adopted to increase the food and fiber production keeping in view of human health and increase in population; the number of undernourished has increased to almost 20% (The state of food insecurity in the world economic crises – impacts and lessons learned. In Food and Agriculture Organization of the United Nations, Rome). Insect pests have been causing serious damage in the fields and stored grains and their products. Interventions is required to limit the losses, therefore, synthetic insecticides have played a significant role in their management for more than 60 years. Indiscriminate use of insecticides have left undesirable residues in the environment, which are toxic to human beings and non target organisms as well as insects have developed resistance against them and resurgence of pests that lead to find a suitable, sustainable and efficient method of management. Microorganisms: bacteria, viruses, fungi and protozoa form the most abundant and diverse groups, which offer a vast resource for exploitation to use in the management program. Bacillus thuringiensis is a gram positive, occurs in soil and ubiquitous in distribution. It produces parasporal crystalline body which contains one or more cry proteins that can be toxic to a number of insects. cry proteins are encoded by cry genes and 200 of them are identified. Similarly, a number of insect pests are also vulnerable to viral diseases. Nuclear Polyhedrosis and Granulosis Viruses are commonly used against the Lepidoptera. They are highly species specific and safer to human beings. Fungi, often act as important natural control agents that limit the insect population. Promising results are obtained by Beauveria bassiana and Metarhizium anisopliae against many insect pests. B. bassiana grows naturally in soil throughout the world and causes white muscardine disease. Therefore, intensive work is required to improve the efficacy of microbial insecticides through molecular biology and genetic engineering to enhance their role in the insect management for better food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aronson AI, Shai Y (2001) Why Bacillus thuringiensis insecticidal toxins are so effective? Unique features of their mode of action. FEMS Microbiol Lett 195:1–8

    Article  CAS  Google Scholar 

  • Asai J, Kawamoto F, Kawase S (1973) On the structure of cytoplasmic polyhedrosis virus of silkworm, Bombyx mori. J Invert Pathol 29:69–73

    Google Scholar 

  • Benedict JH (2003) Strategies for controlling insect, mite and nematodes pests. In: Chrispeels MJ, Sadava DE (eds) Plants, genes, and crop biotechnology. Jones and Bartlett Publishers, Sudbury, pp 414–442

    Google Scholar 

  • Benjamin MA, Zhioua E, Ostfeld RS (2002) Laboratory and field evaluation of the entomopathogenic fungus, Metarhizium anisopliae (Deuteromycetes) for controlling questing adult, Ixodes scapularis (Acari: Ixodidae). J Med Entomol 39:723–728

    Article  Google Scholar 

  • Bhargava MC, Choudhary RK, Jain PC (2008) Genetic engineering of plants for insect resistance. In: Jain PC, Bhargava MC (eds) Entomology: novel approaches. New India Publishing, New Delhi, pp 133–144

    Google Scholar 

  • Blissard GW, Black B, Crook N, Keddie BA, Possee R, Rohrmann G, Theilmann D, Volkman L (2000) Family Baculoviridae. In: van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EGB, Estate MK, Lemon SM, Mainloff J, Mayo MA, McGoech DJ, Pringle CR, Wickners RB (eds) Virus Taxonom. Academic, San Diego, pp 195–202

    Google Scholar 

  • Bonning BC, Hammock BD (1996) Development of recombinant baculoviruses for insect control. Annu Rev Entomol 41:191–210

    Google Scholar 

  • Bravo A, Gómez I, Conde J, Muñoz-Garay C, Sánchez J, Zhuang M, Gill SS, Soberón M (2004) Oligomerization triggers differential binding of a pore-forming toxin to a different receptor leading to efficient interaction with membrane microdomains. Biochem Biophys Acta 1667:38–46

    Article  CAS  Google Scholar 

  • Carlton BC (1988) Development of genetically improved strain of Bacillus thuringiensis – a biological insecticide. Am Chem Soc 9:260–297

    Google Scholar 

  • Chandler D, Bailey AS, Mark G, Davidson TG, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc Biol Sci. doi:10.1098/rstb.2010.0390

  • Charnley AK (2003) Fungal pathogens of insects: cuticle degrading enzymesandtoxins. Adv Bot Res 40:241–321

    Article  CAS  Google Scholar 

  • Charnley AK, Collins SA (2007) Entomopathogenic fungi and their role in pest control. In: Kubicek CP, Druzhinina IS (eds) Environmental and microbial relationships. The Mycota IV, 2nd edn. Springer, Berlin/Heidelberg

    Google Scholar 

  • Clarkson JM, Charnley AK (1996) New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol 4:197–203

    Article  CAS  Google Scholar 

  • Cranshaw WS (2008) Bacillus thuringiensis: home and garden, Insect series no 5.556. Colorado State University Cooperative Extension, Fort Collins

    Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    CAS  PubMed Central  Google Scholar 

  • de Maagd RA, Weemen-Hendriks M, Stiekema W, Bosch D (2000) Domain III substitution in Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specific determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids. Appl Environ Microbiol 66:1559–1563

    Article  PubMed Central  Google Scholar 

  • Federici BA (1997) Baculovirus pathogenesis. In: Miller LK (ed) The baculoviruses. Plenum Press, New York, pp 33–59

    Chapter  Google Scholar 

  • Fernandez S, Groden E, Vandenberg JD, Furlong MJ (2001) The effect of mode of exposure to Beauveria bassiana on conidia acquisition and host mortality of Colorado potato beetle, Leptinotarsa decemlineata. J Invert Pathol 77:217–226

    Article  CAS  Google Scholar 

  • Freimoser FM, Screen S, Hu G, St Leger R (2003) EST analysis of genes expressed by the zygomycete pathogen Conidiobolus coronatus during growth on insect cuticle. Microbiology 149:1893–1900

    Article  CAS  Google Scholar 

  • Gill SS, Cowles EA, Pietrantonio PV (1992) The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol 37:615–636

    Article  CAS  Google Scholar 

  • Gujar GT, Kalia V, Kumar A, Singh BP, Mittal A, Nair R, Mohan M (2007) Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis (Bt) Cry toxins and resistance management for Bt cotton in India. J Invert Pathol 95:214–219

    Article  CAS  Google Scholar 

  • Gupta RP, Kalia A, Kapoor S (2007) Biopesticides. In: Bioinoculants: a step towards sustainable agriculture. In: Singh A, Parmar N, Kuhad RC (eds) Bioaugmentation, biostimulation and biocontrol soil biology. New India Publishing Agency, New Delhi, pp 223–256

    Google Scholar 

  • Hajek AE, St Leger RJ (1994) Interactions between fungal pathogens and insect hosts. Annu Rev Entomol 39:293–322

    Article  Google Scholar 

  • Harris RS, Harcourt SJ, Glare TR, Rose EA, Nelson TJ (2000) Susceptibility of Vespula vulgaris (Hymenoptera: Vespidae) to generalist entomopathogenic fungi and their potential for wasp control. J Invert Pathol 75:251–258

    Article  CAS  Google Scholar 

  • Heimpel AM (1967) A taxonomic key proposed for the species of “crystaloferous” bacteria. J Invertebr Pathol 9:364–375

    Article  CAS  Google Scholar 

  • Henderson CW, Johnson CL, Lodhi SA, Bilimoria SL (2001) Replication of Chilo iridescent virus in the cotton boll weevil, Anthonomus grandis, and development of an infectivity assay. Arch Virol 146:767–775

    Article  CAS  Google Scholar 

  • Hernandez CS, Ferre J (2005) Common receptor for Bacillus thuringiensis toxins Cry 1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera, Helicoverpa zea, and Spodoptera exigua. Appl Environ Microbiol 71:5627–5629

    Article  CAS  PubMed Central  Google Scholar 

  • Herrero SJ, Cabrera G, Ferré J, Bakker PL, de Maagd RA (2004) Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae. Biochem J 384:507–513

    Article  CAS  PubMed Central  Google Scholar 

  • Höfte H, de Greve H, Seurinck J (1986) Structural and functional analysis of a cloned delta endotoxin of Bacillus thuringiensis Berliner. Eur J Biochem 161:273–280

    Article  Google Scholar 

  • Huger A (1963) Granulosis of insects. In: Steinhaus EA (ed) Insect pathology: an advanced treatise, vol 689. Academic, New York/London, pp 531–575

    Chapter  Google Scholar 

  • Jakob NJ, Kleespies RG, Tidona CA, Müller K, Gelderblom HR, Darai G (2002) Comparative analysis of the genome and host range characteristics of two insect iridoviruses: Chilo iridescent virus and a cricket iridovirus isolate. J Gen Virol 83:463–470

    Article  CAS  Google Scholar 

  • Jian X, Qin L, Xiang-dong Y, Shu-de Z (2006) A review of recent development of Bacillus thuringiensis. ICP genetically engineered microbes. Entomol J East China 15:53–58

    Google Scholar 

  • Knowles BH (1994) Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins. Adv Insect Physiol 24:275–308

    Article  CAS  Google Scholar 

  • Kumar S, Chandra A, Pandey KC (2008) Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy. J Environ Biol 29:641–653

    CAS  Google Scholar 

  • Lacey LA, Frutos R, Kaya HK, Vail P (2001) Insect pathogens as biological control agents: do they have a future? Biol Control 21:230–248

    Article  Google Scholar 

  • Lasa R, Moreno I, Caballero P, Williams T (2009) Application of juvenile hormone analogue and optical brightener technologies to the production of Spodoptera frugiperda multiple nucleopolyhedrovirus. IOBC Wprs Bull 45:153–156

    Google Scholar 

  • Lemaux P (2008) Genetically engineered plants and foods: a scientist’s analysis of the issues (part I). Annu Rev Plant Biol 59:771–812. doi:10.1146/annurev.arplant.58.032806.103840

    Article  CAS  Google Scholar 

  • Loc NT, Chi VTB (2007) Biocontrol potential of Metarhizium anisopliae and Beauveria bassiana against diamondback moth, Plutella xylostella. Omonrice 15:86–93

    Google Scholar 

  • Mannion CM, McLane W, Klein MG, Moyseenko J, Oliver JB, Cowan D (2001) Management of early-instar Japanese beetle (Coleoptera: Searabaeidae) in field-grown nursery crops. J Econ Entomol 94:1151–1161

    Article  CAS  Google Scholar 

  • Martignoni ME, Iwai PJ (1986) A catalogue of viral diseases of insects, mites and ticks, 4th edn. USDA Forest Service PNW-195, Washington, DC

    Google Scholar 

  • McGaughey WH (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229:193–195

    Article  CAS  Google Scholar 

  • Metchnikoff E (1879) Diseases of the larva of the grain weevil. Insects harmful to agriculture (series). Issue III, The grain weevil. Published by the commission attached to the Odessa Zemstvo office for the investigation of the problem of insects harmful to agriculture, Odessa, 32 p

    Google Scholar 

  • Mitsuhashi W, Kawakita H, Murakami R, Takemoto Y, Saiki T, Miyamoto K, Wada S (2007) Spindles of an entomopoxvirus facilitate its infection of the host insect by disrupting the peritrophic membrane. J Virol 18:4235–4243

    Article  Google Scholar 

  • Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD (1995) Virus taxonomy; classification and nomenclature of viruses. Sixth report of the international committee on taxonomy of viruses. Springer, Wien/New York. 586 pp

    Google Scholar 

  • Narayanan K (2004) Insect defence: its impact on microbial control of insect pests. Curr Sci 86:6–25

    Google Scholar 

  • Phoofolo MW, Obrycki JJ, Lewis LC (2001) Quantitative assessment of biotic mortality factors of the European corn borer (Lepidoptera: Crambidae) in field corn. J Econ Entomol 94:617–622

    Article  CAS  Google Scholar 

  • Pimentel D (2007) Area-wide pest management: environmental, economic and food issues. In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests: from research to field implementation. Springer, Dordrecht, pp 35–47

    Chapter  Google Scholar 

  • Pimentel D (2009) Pesticides and pest control. In: Peshin R, Dhawan AK (eds) Integrated pest management: innovation- development. Springer, Dordrecht, pp 83–88

    Chapter  Google Scholar 

  • Prasad A, Veerwal B (2010) Biotoxicity of entomopathogenic fungus Beauveria bassiana (balsamo) vuillemin, against early larval instars of anopheline mosquitoes. J Herb Med Toxicol 4(2):181–188

    Google Scholar 

  • Rajguru M, Sharma AN, Banerjee S (2011) Feasibility assessment of plant extracts fortified with Bacillus thuringiensis Berliner for management of Spodoptera litura Fab. Int J Trop Insect Sci 31(1–2):92–97

    Article  Google Scholar 

  • Rohrmann GF (2008) Baculovirus molecular biology. National Center for Biotechnol. Information (US), NCBI, Bethesda

    Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71

    Article  CAS  Google Scholar 

  • Sarfraz M, Keddie BA (2005) Conserving the efficacy of insecticides against Plutella xylostella (L.) (Lep., Plutellidae). J Appl Entomol 129:149–157

    Article  CAS  Google Scholar 

  • Saufi AEM (2008) Characterization of an Egyptian Spodoptera littoralis nuclear polyhedrosis virus and a possible use of a highly conserved region from polyhedron gene nucleopolyhedrovirus detection. Virol J 5:13

    Article  Google Scholar 

  • Sayyed AH, Omar D, Wright DJ (2004) Genetics of spinosad resistance in a multi-resistant field selected population of Plutella xylostella. Pest Manag Sci 60:827–832

    Article  CAS  Google Scholar 

  • Simon O, Williams T, Lopez-Ferber M, Taulemesse JM, Caballero P (2008) Population genetic structure determines the speed of kill and occlusion body production in Spodoptera frugiperda multiple nucleopolyhedrovirus. Biol Control 44:321–330

    Article  Google Scholar 

  • Smith RF (1970) Pesticides: their use and limitations in the pest management. In: Labb RL, Guthrie FE (eds) Concepts of pest management., pp 102–113

    Google Scholar 

  • Solter LF, Becnel JJ (2000) Entomopathogenic microsporida. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology: application and evaluation of pathogens for control of insects and other invertebrate pests. Kluwer, Dordrecht, pp 231–254

    Chapter  Google Scholar 

  • Steinhaus EA (1954) Further observations on Bacillus thuringiensis Berliner and other spore forming bacteria. Hilgardia 23:1

    Article  Google Scholar 

  • Strasser H, Vey A, Butt T (2000) Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Sci Technol 10:717–735

    Article  Google Scholar 

  • Suryawanshi DS, Bhede BV, Bhosale SV, More DG (2008) Insecticide resistance in field population of American bollworm, Helicoverpa armigera Hub. (Lepidoptera: Noctuidae). Indian J Entomol 70:44–46

    Google Scholar 

  • Suzuki A, Taguchi H, Tamura S (1970) Isolation and structure elucidation of three new insecticidal cyclodepsipeptides, destruxins C and D and desmethyldestruxin B, produced by Metarrhizium anisopliae. Agric Biol Chem 34:813–817

    Article  CAS  Google Scholar 

  • Tamura S, Kuyama S, Kodaira Y, Higashikawa S (1964) Studies on destruxin B, an insecticidal depsipeptide produced by Oospora destructor. Inst Appl Microbiol Symp Microbiol 6:127–140

    Google Scholar 

  • Tanada Y, Kaya HK (1993) Insect pathology. Academic, San Diego, p 666

    Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:194–208

    Article  Google Scholar 

  • Tillman PG, Styer EL, Hamm JJ (2004) Transmission of an ascovirus from Heliothis virescens (Lepidoptera, Noctuidae) and effects of the pathogen on survival of a parasitoid, Cardiochiles nigriceps (Hymenoptera, Braconidae). Environ Entomol 33:633–643

    Google Scholar 

  • Tonka T, Weiser J (2000) Iridovirus infection in mayfly larvae. J Invertebr Pathol 76:229–231

    Article  CAS  Google Scholar 

  • Vaeck M, Reynaerts A, Hofte A (1987) Transgenic plants protected from insect attack. Nature 328:33–37. doi:10.1038/328033a0

    Article  CAS  Google Scholar 

  • Vey A, Hoagland RE, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents. Progress, problems and potential. CABI Publishing, Oxford, pp 311–346

    Chapter  Google Scholar 

  • Williams T (2008) Natural invertebrate hosts of iridoviruses (Iridoviridae). Neotrop Entomol 37:615–632

    Article  PubMed  Google Scholar 

  • Winstanley D, O’Reilly DR (1999) Granuloviruses. In: Webster R, Granoff A (eds) The encyclopedia of virology, 2nd edn. Academic, London, pp 140–146

    Chapter  Google Scholar 

  • Xavier R, Reena J, Sreeramanan S (2007) Environmental distribution and diversity of insecticidal proteins of Bacillus thuringiensis Berliner. Malays J Microbiol 3(2):1–6

    Google Scholar 

  • Zimmerman G (2007) Review on safety of entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 17:879–920

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shafiq Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ansari, M.S., Ahmad, S., Ahmad, N., Ahmad, T., Hasan, F. (2013). Microbial Insecticides: Food Security and Human Health. In: Malik, A., Grohmann, E., Alves, M. (eds) Management of Microbial Resources in the Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5931-2_13

Download citation

Publish with us

Policies and ethics