Skip to main content
Log in

Mechanical Response of Conductor on Round Core (CORC) Cables Under Electromagnetic Force

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The conductor on round core (CORC) cables are fabricated with multilayer high-temperature superconductor tapes, which are helically wound around a circular central former. The large Lorentz force will be generated by the transport current in CORC cables under high magnetic field, which will affect the stress and strain distributions of tapes in the cables and the performance of superconducting tape. This paper establishes a two-dimensional axisymmetric model to analyze the mechanical response of CORC cables subjected to the Lorentz force and analyzes the influence of air gaps on stress and strain distributions inside the cables. The T-A method is used to calculate the distributions of current density, magnetic field and the Lorentz force in CORC cables. The mechanical response of CORC cables is analyzed by applying the Lorentz force as an external load in the mechanical model. The direction of electromagnetic force is analyzed in CORC cables with and without shielding current, and the results show that the shielding current can lead to the concentration of electromagnetic force. The maximum stress and strain occur on both sides of the superconducting tapes in the cables with shielding current. Reducing the size of air gaps can reduce the stress and strain in the superconducting layers. The analysis of mechanical response of CORC cables can play an important role in optimizing the design of CORC cables and improving transmission performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. Weiss JD, Mulder T, ten Kate HJ, van der Laan DC. Introduction of CORC wires: highly flexible, round high-temperature superconducting wires for magnet and power transmission applications. Supercon Sci Technol. 2016;30:014002.

    Article  Google Scholar 

  2. van der Laan DC, Weiss J, Noyes P, Trociewitz U, Godeke A, Abraimov D, Larbalestier D. Record current density of 344 Amm−2 at 4.2 K and 17 T in CORC accelerator magnet cables. Supercon Sci Technol. 2016;29:055009.

    Article  Google Scholar 

  3. Mulder T, Dudarev A, Mentink M, Silva H, Van Der Laan D, Dhallé M, Ten Kate H. Design and manufacturing of a 45 kA at 10 T REBCO-CORC cable-in-conduit conductor for large-scale magnets. IEEE Trans Appl Supercond. 2016;26:4803605.

    Article  Google Scholar 

  4. Mulder T, Weiss J, van der Laan D, Dhalle M, Ten Kate H. Development of ReBCO-CORC wires with current densities of 400–600 A/mm^2 at 10 T and 4.2 K. IEEE Trans Appl Supercond. 2017;28:4800504.

    Google Scholar 

  5. van der Laan DC, Abraimov D, Polyanskii A, Larbalestier DC, Douglas J, Semerad R, Bauer M. Anisotropic in-plane reversible strain effect in Y0.5Gd0.5Ba2Cu3O7−δ coated conductors. Supercon Sci Technol. 2011;24:115010.

    Article  Google Scholar 

  6. van der Laan DC, Noyes PD, Miller G, Weijers HW, Willering G. Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T. Supercon Sci Technol. 2013;26:045005.

    Article  Google Scholar 

  7. Jin H, Qin J, Zhou C, Liu H, Liu F, Gao P, Xiao G, Ma H, Li J, Wu Y. The performance of first CORC cable solenoid insert for development of CFETR high-field magnet. Nucl Fusion. 2020;60:096028.

    Article  Google Scholar 

  8. Vojenčiak M, Kario A, Ringsdorf B, Nast R, Van Der Laan D, Scheiter J, Jung A, Runtsch B, Gömöry F, Goldacker W. Magnetization ac loss reduction in HTS CORC cables made of striated coated conductors. Supercon Sci Technol. 2015;28:104006.

    Article  Google Scholar 

  9. Terzioğlu R, Vojenčiak M, Sheng J, Gömöry F, Çavuş T, Belenli I. AC loss characteristics of CORC cable with a Cu former. Supercon Sci Technol. 2017;30:085012.

    Article  Google Scholar 

  10. Yang J, Tian M, Ma J, Ozturk Y, Li C, Hu J, Gawith J, Shah A, Patel I, Wei H. Numerical study on AC loss characteristics of conductor on round core cables under transport current and magnetic field. IEEE Trans Appl Supercond. 2021;31:5901504.

    Article  Google Scholar 

  11. Sheng J, Vojenčiak M, Terzioğlu R, Frolek L, Gömöry F. Numerical study on magnetization characteristics of superconducting conductor on round core cables. IEEE Trans Appl Supercond. 2016;27:4800305.

    Google Scholar 

  12. Liang F, Venuturumilli S, Zhang H, Zhang M, Kvitkovic J, Pamidi S, Wang Y, Yuan W. A finite element model for simulating second generation high temperature superconducting coils/stacks with large number of turns. J Appl Phys. 2017;122:043903.

    Article  Google Scholar 

  13. Zhang H, Zhang M, Yuan W. An efficient 3D finite element method model based on the T-A formulation for superconducting coated conductors. Supercon Sci Technol. 2016;30:024005.

    Article  Google Scholar 

  14. Wang S, Yong H, Zhou Y. Calculations of the AC losses in superconducting cables and coils: Neumann boundary conditions of the T-A formulation. Supercon Sci Technol. 2022;35:065013.

    Article  Google Scholar 

  15. Wang Y, Zhang M, Grilli F, Zhu Z, Yuan W. Study of the magnetization loss of CORC cables using a 3D T-A formulation. Supercon Sci Technol. 2019;32:025003.

    Article  Google Scholar 

  16. Yan Y, Song P, Li W, Sheng J, Qu T. Numerical investigation of the coupling effect in CORC cable with striated strands. IEEE Trans Appl Supercond. 2019;30:4800305.

    Google Scholar 

  17. Shen B, Chen X, Fu L, Jiang S, Gou H, Sheng J, Huang Z, Wang W, Zhai Y, Yuan Y. Superconducting conductor on round core (CORC) cables: 2D or 3D modeling? IEEE Trans Appl Supercond. 2021;31:4803505.

    Google Scholar 

  18. Ilin K, Yagotintsev K, Zhou C, Gao P, Kosse J, Otten S, Wessel WA, Haugan T, van der Laan DC, Nijhuis A. Experiments and FE modeling of stress-strain state in ReBCO tape under tensile, torsional and transverse load. Supercon Sci Technol. 2015;28:055006.

    Article  Google Scholar 

  19. Wang T, Gou X. Effect of uniaxial strain on oxygen diffusion in grain boundaries of polycrystalline YBa2Cu3O7-coated conductors. J Supercond Nov Magn. 2021;34:2259–69.

    Article  Google Scholar 

  20. Liu D, Tang Y, Li D, Yong H. Mechanical analysis of a no-insulation pancake coil with the overband during a quench. Acta Mech Sin. 2022;35:357–66.

    Article  Google Scholar 

  21. Wang K, Gao YW, Anvar VA, Radcliff K, Weiss JD, van der Laan DC, Zhou YH, Nijhuis A. Prediction of strain, inter-layer interaction and critical current in CORC® wires under axial strain by T-A modeling. Supercon Sci Technol. 2022;35:105012.

    Article  Google Scholar 

  22. Xiao G, Zhou C, Qin J, Jin H, Xu P, Liu H. Experimental study on the critical current of CORC cable under cyclic bending-straightening. IEEE Trans Appl Supercond. 2021;31:4803904.

    Article  Google Scholar 

  23. Hu R, Yuan Y, Chen Y, Li W, Ye H, Sheng J, Zhao Y, Jin Z. Numerical study on mechanical properties of conductors on round core cables. IEEE Trans Appl Supercond. 2021;31:4801405.

    Article  Google Scholar 

  24. Anvar V, Ilin K, Yagotintsev KA, Monachan B, Ashok K, Kortman BA, Pellen B, Haugan TJ, Weiss JD, van der Laan DC. Bending of CORC® cables and wires: finite element parametric study and experimental validation. Supercon Sci Technol. 2018;31:115006.

    Article  Google Scholar 

  25. van der Laan DC, Radcliff K, Anvar V, Wang K, Nijhuis A, Weiss J. High-temperature superconducting CORC wires with record-breaking axial tensile strain tolerance present a breakthrough for high-field magnets. Supercon Sci Technol. 2021;34:10LT01.

    Article  Google Scholar 

  26. Wang K, Gao Y, Luo W, Zhou Y, Nijhuis A. Nonlinear contact behavior of HTS tapes during pancake coiling and CORC cabling. Supercon Sci Technol. 2021;34:075003.

    Article  Google Scholar 

  27. Wu Q, Wang Y, Huang Z, Xie Y, He R, Wei J, Lei Z, Qin J, Tan Y. Electromagnetic and mechanical properties of CORC cable due to screening current. Supercon Sci Technol. 2022;35:075005.

    Article  Google Scholar 

  28. Barth C, Mondonico G, Senatore C. Electro-mechanical properties of REBCO coated conductors from various industrial manufacturers at 77 K, self-field and 4.2 K, 19 T. Supercon Sci Technol. 2015;28:045011.

    Article  Google Scholar 

  29. Hilton D, Gavrilin A, Trociewitz U. Practical fit functions for transport critical current versus field magnitude and angle data from (REBCO) coated conductors at fixed low temperatures and in high magnetic fields. Supercon Sci Technol. 2015;28:074002.

    Article  Google Scholar 

  30. Xia J, Bai H, Yong H, Weijers HW, Painter TA, Bird MD. Stress and strain analysis of a REBCO high field coil based on the distribution of shielding current. Supercon Sci Technol. 2019;32:095005.

    Article  Google Scholar 

  31. Niu M, Xia J, Yong H. Numerical analysis of the electromechanical behavior of high-field REBCO coils in all-superconducting magnets. Supercon Sci Technol. 2021;34:115005.

    Article  Google Scholar 

  32. Liu QF, Feng WJ, Liu JY. Flux-pinning-induced stress behaviors in a long superconducting slab with central cuboid hole. Acta Mech Sin. 2021;37:1255–63.

    Article  MathSciNet  Google Scholar 

  33. Jing Z. Coupled multiphysics modeling of the thermal-magnetic-mechanical instability behavior in bulk superconductors during pulsed field magnetization. Supercon Sci Technol. 2022;35:054006.

    Article  Google Scholar 

  34. Weiss K, Bagrets N, Sas J, Jung A, Schlachter S, Della Corte A, Celentano G, Kvačkaj T. Mechanical and thermal properties of central former material for high-current superconducting cables. IEEE Trans Appl Supercond. 2016;26:8800604.

    Article  Google Scholar 

  35. Niu M, Yong H, Zhou Y. 3D modelling of coupled electromagnetic-mechanical responses in REBCO coils involving tape inhomogeneity. Supercon Sci Technol. 2022;35:054009.

    Article  Google Scholar 

  36. Kim NH. Introduction to nonlinear finite element analysis. Berlin: Springer; 2014.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (Nos. U2241267, 11872195 and 12172155) and Fundamental Research Funds for the Central Universities (No. lzujbky-2022-48).

Author information

Authors and Affiliations

Authors

Contributions

JW contributed significantly to numerical simulations, analysis and manuscript preparation. DL contributed to funding, numerical simulations. XZ contributed to the conception and analysis of the study. HY contributed to the main ideas, funding, manuscript preparation and supervised the research.

Corresponding author

Correspondence to Huadong Yong.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Ethical Approval and Consent to Participate

This study does not involve any sensitive information, and there are no ethical issues.

Consent for Publication

All authors agree the publication of the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Liu, D., Zhang, X. et al. Mechanical Response of Conductor on Round Core (CORC) Cables Under Electromagnetic Force. Acta Mech. Solida Sin. 36, 418–427 (2023). https://doi.org/10.1007/s10338-023-00388-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-023-00388-x

Keywords

Navigation