Skip to main content
Log in

An Efficient Method for Endotoxin Removal from Snake Antivenoms

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Parenterally administered snake antivenom immunoglobulins are the only specific treatment for envenoming by snakebites. Endotoxin removal is a necessary part of good manufacturing practice for antivenom products to avoid life-threatening consequences associated with injecting endotoxin-contaminated product. Optimization of pH is an essential factor in endotoxin purification. This study aimed to compare ultrafiltration, ion-exchange chromatography and affinity resin-based chromatography techniques at different pH values to select the depyrogenation method with the highest endotoxin removal efficiency and optimum protein/product recovery. Affinity resin-based chromatography achieved 91.2% protein recovery at acidic pH without detectable endotoxins, while ion-exchange chromatography achieved 74.42% protein recovery at pH 7.5. In contrast, ultrafiltration achieved the lowest protein recovery compared to other chromatography techniques. In addition, ultrafiltration was ineffective in removing serum albumin (~ 42–57 kDa) and low molecular weight (MW) Fc fragments (~ 24–31 kDa). In conclusion, affinity resin-based chromatography has proven to be the most effective endotoxin removal method, while ultrafiltration may not be appropriate for the removal of bacterial LPS from antivenom sera. Moreover, this study demonstrated the existence of an optimum pH for each chromatographic method for the purpose of producing sterile and endotoxin-free snake antivenoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A (2008) The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med 5:e218. https://doi.org/10.1371/journal.pmed.0050218

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jones RGA, Landon J (2003) A protocol for ‘enhanced pepsin digestion’: a step by step method for obtaining pure antibody fragments in high yield from serum. J Immunol Methods 275:239–250. https://doi.org/10.1016/S0022-1759(03)00005-X

    Article  CAS  PubMed  Google Scholar 

  3. Pradhan S, Kumar S, Singh D, Sood RC, Sehgal R (2007) Development of passive haemagglutination (PHA) and haemagglutination inhibition (HAI) technique for potency estimation of Cobra Antisnake Venom Serum (ASVS). Biologicals 35(3):155–160. https://doi.org/10.1016/j.biologicals.2006.08.001

    Article  CAS  PubMed  Google Scholar 

  4. Harrison RA, Hargreaves A, Wagstaff SC, Faragher B, Lalloo DG (2009) Snake envenoming: a disease of poverty. PLoS Negl Trop Dis 3:e569. https://doi.org/10.1371/journal.pntd.0000569

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chippaux JP (2010) Guidelines for the production, control and regulation of snake antivenom immunoglobulins. Biol Aujourdhui 204(1):87–91. https://doi.org/10.1051/jbio/2009043

  6. Bononi I, Balatti V, Gaeta S, Tognon M (2008) Gram-negative bacterial lipopolysaccharide retention by a positively charged new-generation filter. Appl Environ Microbiol 74(20):6470–6472. https://doi.org/10.1128/AEM.00552-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shands JW (1973) Affinity of endotoxin for membranes. J Infect Dis 128:197–201. https://doi.org/10.1093/infdis/128.supplement_1.s197

    Article  Google Scholar 

  8. Sweadner KJ, Forte M, Nelson LL (1977) Filtration removal of endotoxin (pyrogens) in solution in different states of aggregation. Appl Environ Microbiol 34:382–385

    Article  CAS  Google Scholar 

  9. Wilson MJ, Claire L, Haggart C, Gallagher SP, Walsh D (2001) Removal of tightly bound endotoxin from biological products. J. Biotechnol 88:67–75. https://doi.org/10.1016/S0168-1656(01)00256-5

    Article  CAS  PubMed  Google Scholar 

  10. Petsch D, Anspach FB (2000) Endotoxin removal from protein solutions. J Biotechnol 76(2–3):97–119. https://doi.org/10.1016/s0168-1656(99)00185-6

    Article  CAS  PubMed  Google Scholar 

  11. Ongkudon CM, Chew JH, Liu B, Danquah MK (2012) Review article: chromatographic removal of endotoxins: a bioprocess engineer’s perspective. International Scholarly Research Network. https://doi.org/10.5402/2012/649746

    Article  Google Scholar 

  12. Saetang T, Treamwattana N, Suttijitpaisal P, Ratanabanangkoon K (1997) Quantitative comparison on the refinement of horse antivenom by salt fractionation and ion exchange chromatography. J Chromatogr B Biomed Sci Appl 700:233. https://doi.org/10.1016/s0378-4347(97)00244-2

    Article  CAS  PubMed  Google Scholar 

  13. Thet NS (2006) Ultrafiltration Membrane Process for Pyrogen Removal in the Preparation of Water for Injection (WFI). INQUIRY 7:72–80

    Google Scholar 

  14. Tutunjian RS (1982) Pyrogen removal by ultrafiltration. Prog. Clin. Biol. Res., Amicon Corporation, Danvers

    Google Scholar 

  15. Janson JC, Ryden L (1998) Protein purification: principles, high resolution methods and applications, 2nd edn. Wiley, New York

    Google Scholar 

  16. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  17. Hojjatie MM, Abrams D (2014) Validation for the determination of biuret in water-soluble, urea-based commercial inorganic fertilizer materials, urea solutions, and sulfur-coated urea products by reversed-phase liquid chromatography: single-laboratory validation of an extension of AOAC official methods 2003. J AOAC Int 97(3):712–720. https://doi.org/10.5740/jaoacint.12-443

    Article  CAS  PubMed  Google Scholar 

  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biochem 193:265–275

    CAS  Google Scholar 

  19. Lee KH, Harrington MG (1981) Preparative gel electrophoresis. In: Hames BD, Rickwood D (eds) A practical approach in gel electrophoresis of proteins, 1st edn. IRL Press, London, England

    Google Scholar 

  20. Sheraba NS, Yassin AS, Diab MR, Amin MA, Zeden HH (2019) A validation study of the limulus amebocyte lysate test as end-product endotoxin test for polyvalent horse snake antivenom. PDA J Pharm Sci Technol. https://doi.org/10.5731/pdajpst.2018.009522

    Article  PubMed  Google Scholar 

  21. Górny RL, Douwes J, Versloot P, Heederik D, Dutkiewicz J (1999) Application of the classic Limulus test and the quantitative kinetic chromogenic LAL method for evaluation of endotoxin concentration in indoor air. Ann Agric Environ Med 6:45–51

    PubMed  Google Scholar 

  22. United States Pharmacopeia 32-NF27 (2009) Chapter %3c85%3ebacterial endotoxins test, 2nd supplement, The USP Convention, Rockville, MD, Inc. Mack Publishing Company, Easton, pp 88–90

    Google Scholar 

  23. Nasiri H, Valedkarimi Z, Aghebati-Maleki L, Abdolalizadeh J, Esparvarinha M, Majidi J (2017) Production and purification of polyclonal antibody against F(ab')2 fragment of human immunoglobulin G. Vet Res Forum 8(4):307–312 (PMID: 29326789)

    PubMed  PubMed Central  Google Scholar 

  24. Acconci C, Legallais C, Vijayalakshmi M, Bueno SM (2000) Depyrogenation of snake antivenom serum solutions by hollow fiber-based pseudobioaffinity filtration. J Membr Sci 173:235–245

    Article  CAS  Google Scholar 

  25. Fujita Y, Tokunaga T, Kataoka H (2011) Saline and buffers minimize the action of interfering factors in the bacterial endotoxins test. Anal Biochem 409:46–53. https://doi.org/10.1016/j.ab.2010.10.014

    Article  CAS  PubMed  Google Scholar 

  26. Ongkudon CM, Chew JH, Liu B, Danquah MK (2012) Chromatographic removal of endotoxins: a bioprocess engineer’s perspective. Chromatography 5:1–9. https://doi.org/10.5402/2012/649746

    Article  CAS  Google Scholar 

  27. Hirayama C, Sakata M (2002) Chromatographic removal of endotoxin from protein solutions by polymer particles. J. Chromatogr B Anal Technol Biomed Life Sci 781:419–432. https://doi.org/10.1016/s1570-0232(02)00430-0

    Article  CAS  Google Scholar 

  28. Raweerith R, Ratanabanangkoon K (2003) Fractionation of equine antivenom using caprylic acid precipitation in combination with cationic ion-exchange chromatography. J Immunol Methods 282:63–72. https://doi.org/10.1016/j.jim.2003.07.014

    Article  CAS  PubMed  Google Scholar 

  29. Jang H, Kim H-S, Moon S-C, Lee Y-R, Yu K-Y, Lee B-K, Youn HZ, Jeong Y-J, Kim B-S, Lee S-H, Kim J-S (2009) Effects of protein concentration and detergent on endotoxin reduction by ultrafiltration. BMB Rep 42(7):462–466. https://doi.org/10.5483/bmbrep.2009.42.7.462

    Article  CAS  PubMed  Google Scholar 

  30. Sakata M, Inoue T, Todokoro M, Kunitake M (2010) Limulus amebocyte lysate assay for endotoxins by an adsorption method with polycation-immobilized Cellulose Beads. Anal Chem 26:291–296. https://doi.org/10.2116/analsci.26.291

    Article  CAS  Google Scholar 

  31. Kukongviriyapan V, Poopyruchpong N, Ratanabanangkoon K (1982) Some parameters of affinity chromatography in the purification of antibody against Naja naja siamensis toxin. J Immunol Methods 49(1):97–104. https://doi.org/10.1016/0022-1759(82)90370-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Nabil El Biblawy, Chairman and C.E.O of the Egyptian Company for Production of Vaccines, Sera & Drugs (EGYVAC), for his tremendous support during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norhan S. Sheraba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. All authors read and approved the final manuscript. This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors. All products used in purification and testing were parts of the routine production line at the production facility.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheraba, N.S., Diab, M.R., Yassin, A.S. et al. An Efficient Method for Endotoxin Removal from Snake Antivenoms. Chromatographia 83, 779–787 (2020). https://doi.org/10.1007/s10337-020-03887-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03887-y

Keywords

Navigation