Skip to main content

Clinical Uses of Snake Antivenoms

  • Living reference work entry
  • First Online:
Toxinology
  • 210 Accesses

Abstract

Antivenom is the key treatment for venomous snakebites. It is produced by purification of polyclonal IgG from plasma of large animals pre-immunized by snake venom. Polyvalent antivenoms, which neutralize venoms from many species prevalent in the areas of uses, are preferred over monovalent antivenoms because the snake species are frequently unidentifiable in clinical practice. Antivenom therapy can promptly reverse snakebite-induced coagulopathy and limb edema, but muscular paralysis from presynaptic toxins, tissue necrosis, and renal failure resolve much more slowly, especially when antivenoms are given late after bites. Effective treatments of these latter complications remain to be determined. The anaphylaxis-like early adverse reaction is the major limitation of antivenom uses. It is unpredictable by the immediate hypersensitivity skin test, and therefore, every antivenom administration requires close observation. Highly purified caprylic acid-stabilized IgG antivenoms show significantly lower rates of reactions. Clinical judgments to give antivenom should be individualized weighing potential benefits versus risks of antivenoms for the snakes in specific regions. Due to the high cost of antivenom production, this therapy is usually lacking in developing countries where snakebites are very common. Strategies for the adequate supply of good quality antivenoms are strongly needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Archundia IG, de Roodt AR, Ramos-Cerrillo B, Chippaux JP, Olguín-Pérez L, Alagón A, Stock RP. Neutralization of Vipera and Macrovipera venoms by two experimental polyvalent antisera: a study of paraspecificity. Toxicon. 2011;57(7–8):1049–56.

    Article  CAS  PubMed  Google Scholar 

  • Boyer LV, Seifert SA, Cain JS. Recurrence phenomena after immunoglobulin therapy for snake envenomations: part 2. Guidelines for clinical management with crotaline Fab antivenom. Ann Emerg Med. 2001;37(2):196–201.

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ. Antivenomics and venom phenotyping: a marriage of convenience to address the performance and range of clinical use of antivenoms. Toxicon. 2010;56(7):1284–91.

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ. Snake venomics: from the inventory of toxins to biology. Toxicon. 2013;75(Dec 1):44-62.

    Google Scholar 

  • Chotenimitkhun R, Rojnuckarin P. Systemic antivenom and skin necrosis after green pit viper bites. Clin Toxicol. 2008;46(2):122–5.

    Article  CAS  Google Scholar 

  • Chotwiwatthanakun C, Pratanaphon R, Akesowan S, Sriprapat S, Ratanabanangkoon K. Production of potent polyvalent antivenom against three elapid venoms using a low dose, low volume, multi-site immunization protocol. Toxicon. 2001;39(10):1487–94.

    Article  CAS  PubMed  Google Scholar 

  • Cook DA, Samarasekara CL, Wagstaff SC, Kinne J, Wernery U, Harrison RA. Analysis of camelid IgG for antivenom development: immunoreactivity and preclinical neutralisation of venom-induced pathology by IgG subclasses, and the effect of heat treatment. Toxicon. 2010a;56(4):596–603.

    Article  CAS  PubMed  Google Scholar 

  • Cook DA, Owen T, Wagstaff SC, Kinne J, Wernery U, Harrison RA. Analysis of camelid IgG for antivenom development: serological responses of venom-immunised camels to prepare either monospecific or polyspecific antivenoms for West Africa. Toxicon. 2010b;56(3):363–72.

    Article  CAS  PubMed  Google Scholar 

  • de Andrade FG, Eto SF, Santos Ferraro AC N d, Gonzales Marioto DT, Vieira NJ, Cheirubim AP, de Paula Ramos S, Venâncio EJ. The production and characterization of anti-bothropic and anti-crotalic IgY antibodies in laying hens: a long term experiment. Toxicon. 2013;66:18–24.

    Article  CAS  PubMed  Google Scholar 

  • de Silva HA, Pathmeswaran A, Ranasinha CD, Jayamanne S, Samarakoon SB, Hittharage A, Kalupahana R, Ratnatilaka GA, Uluwatthage W, Aronson JK, Armitage JM, Lalloo DG, de Silva HJ. Low-dose adrenaline, promethazine, and hydrocortisone in the prevention of acute adverse reactions to antivenom following snakebite: a randomised, double-blind, placebo-controlled trial. PLoS Med. 2011;8(5):e1000435.

    Article  PubMed Central  PubMed  Google Scholar 

  • Durban J, Pérez A, Sanz L, Gómez A, Bonilla F, Rodríguez S, Chacón D, Sasa M, Angulo Y, Gutiérrez JM, Calvete JJ. Integrated “omics” profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genomics. 2013;14:234.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan HW, Marcopito LF, Cardoso JL, França FO, Malaque CM, Ferrari RA, Theakston RD, Warrell DA. Sequential randomised and double blind trial of promethazine prophylaxis against early anaphylactic reactions to antivenom for bothrops snake bites. BMJ. 1999;318(7196):1451–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gawarammana IB, Kularatne SA, Dissanayake WP, Kumarasiri RP, Senanayake N, Ariyasena H. Parallel infusion of hydrocortisone +/− chlorpheniramine bolus injection to prevent acute adverse reactions to antivenom for snakebites. Med J Aust. 2004;180(1):20–3.

    PubMed  Google Scholar 

  • Gold BS, Dart RC, Barish RA. Bites of venomous snakes. N Engl J Med. 2002;347(5):347–56.

    Article  PubMed  Google Scholar 

  • Gutiérrez JM. Improving antivenom availability and accessibility: science, technology, and beyond. Toxicon. 2012;60(4):676–87.

    Article  PubMed  Google Scholar 

  • Gutiérrez JM, León G, Rojas G, Lomonte B, Rucavado A, Chaves F. Neutralization of local tissue damage induced by Bothrops asper (terciopelo) snake venom. Toxicon. 1998;36(11):1529–38.

    Article  PubMed  Google Scholar 

  • Gutiérrez JM, León G, Lomonte B. Pharmacokinetic-pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clin Pharmacokinet. 2003;42(8):721–41.

    Article  PubMed  Google Scholar 

  • Hanvivatvong O, Phanuphak P, Sakulramrung R. Kinetic study of cobra venom and effect of anti-cobra venom in rabbits. In: Pochanukul C, editor. Plant, animal and microbial toxins. Bangkok: Chulalongkorn; 1988. p. 115–26.

    Google Scholar 

  • Harrison RA. Development of venom toxin-specific antibodies by DNA immunisation: rationale and strategies to improve therapy of viper envenoming. Vaccine. 2004;22(13–14):1648–55.

    Article  CAS  PubMed  Google Scholar 

  • Hung DZ, Yu YJ, Hsu CL, Lin TJ. Antivenom treatment and renal dysfunction in Russell’s viper snakebite in Taiwan: a case series. Trans R Soc Trop Med Hyg. 2006;100(5):489–94.

    Article  CAS  PubMed  Google Scholar 

  • Isbister GK, Brown SG, MacDonald E, White J, Currie BJ. Australian Snakebite Project Investigators. Current use of Australian snake antivenoms and frequency of immediate-type hypersensitivity reactions and anaphylaxis. Med J Aust. 2008;188(8):473–6.

    PubMed  Google Scholar 

  • Isbister GK, Shahmy S, Mohamed F, Abeysinghe C, Karunathilake H, Ariaratnam A. A randomised controlled trial of two infusion rates to decrease reactions to antivenom. PLoS One. 2012;7(6):e38739.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Isbister G, Buckley N, Page C, Scorgie F, Lincz L, Seldon M, Brown S; the ASP Investigators. A randomised controlled trial of fresh frozen plasma for treating venom induced consumption coagulopathy in Australian snakebite (ASP-18). J Thromb Haemost. 2013a;11(7):1310-8.

    Google Scholar 

  • Isbister GK, Maduwage K, Shahmy S, Mohamed F, Abeysinghe C, Karunathilake H, Ariaratnam CA, Buckley NA. Diagnostic 20-min whole blood clotting test in Russell’s viper envenoming delays antivenom administration. QJM. 2013b;106(10):925-32.

    Google Scholar 

  • Karnchanachetanee C, Hanvivatvong O, Mahasandana S. Monospecific antivenin therapy in Russell’s viper bite. J Med Assoc Thai. 1994;77(6):293–7.

    CAS  PubMed  Google Scholar 

  • Leeprasert W, Kaojarern S. Specific antivenom for Bungarus candidus. J Med Assoc Thai. 2007;90(7):1467–76.

    PubMed  Google Scholar 

  • León G, Monge M, Rojas E, Lomonte B, Gutiérrez JM. Comparison between IgG and F(ab′)(2) polyvalent antivenoms: neutralization of systemic effects induced by Bothrops asper venom in mice, extravasation to muscle tissue, and potential for induction of adverse reactions. Toxicon. 2001;39(6):793–801.

    Article  PubMed  Google Scholar 

  • Malasit P, Warrell DA, Chanthavanich P, Viravan C, Mongkolsapaya J, Singhthong B, Supich C. Prediction, prevention, and mechanism of early (anaphylactic) antivenom reactions in victims of snake bites. Br Med J (Clin Res Ed). 1986;292(6512):17–20.

    Article  CAS  Google Scholar 

  • Meenatchisundaram S, Parameswari G, Michael A, Ramalingam S. Neutralization of the pharmacological effects of cobra and krait venoms by chicken egg yolk antibodies. Toxicon. 2008;52(2):221–7.

    Article  CAS  PubMed  Google Scholar 

  • Mitrakul C, Impun C. The hemorrhagic phenomena associated with green pit viper (Trimeresurus erythrurus and Trimeresurus popeorum) bites in children. A report of studies in elucidate their pathogenesis. Clin Pediatr. 1973;12(4):215–8.

    CAS  Google Scholar 

  • Mitrakul C, Juzi U, Pongrujikorn W. Antivenom therapy in Russell’s viper bite. Am J Clin Pathol. 1991;95(3):412–7.

    CAS  PubMed  Google Scholar 

  • Nakashima K, Nobuhisa I, Deshimaru M, Nakai M, Ogawa T, Shimohigashi Y, Fukumaki Y, Hattori M, Sakaki Y, Hattori S, Ohno M. Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A2 isozyme genes. Proc Natl Acad Sci USA. 1995;92(12):5605–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Otero R, Gutiérrez JM, Rojas G, Núñez V, Díaz A, Miranda E, Uribe AF, Silva JF, Ospina JG, Medina Y, Toro MF, García ME, León G, García M, Lizano S, De La Torre J, Márquez J, Mena Y, González N, Arenas LC, Puzón A, Blanco N, Sierra A, Espinal ME, Lozano R, et al. A randomized blinded clinical trial of two antivenoms, prepared by caprylic acid or ammonium sulphate fractionation of IgG, in Bothrops and Porthidium snake bites in Colombia: correlation between safety and biochemical characteristics of antivenoms. Toxicon. 1999;37(6):895–908.

    Article  CAS  PubMed  Google Scholar 

  • Otero R, León G, Gutiérrez JM, Rojas G, Toro MF, Barona J, Rodríguez V, Díaz A, Núñez V, Quintana JC, Ayala S, Mosquera D, Conrado LL, Fernández D, Arroyo Y, Paniagua CA, López M, Ospina CE, Alzate C, Fernández J, Meza JJ, Silva JF, Ramírez P, Fabra PE, Ramírez E, Córdoba E, Arrieta AB, Warrell DA, Theakston RD. Efficacy and safety of two whole IgG polyvalent antivenoms, refined by caprylic acid fractionation with or without beta-propiolactone, in the treatment of Bothrops asper bites in Colombia. Trans R Soc Trop Med Hyg. 2006;100(12):1173–82.

    Article  CAS  PubMed  Google Scholar 

  • Otero-Patiño R, Cardoso JL, Higashi HG, Nunez V, Diaz A, Toro MF, Garcia ME, Sierra A, Garcia LF, Moreno AM, Medina MC, Castañeda N, Silva-Diaz JF, Murcia M, Cardenas SY, da Silva WD D. A randomized, blinded, comparative trial of one pepsin-digested and two whole IgG antivenoms for Bothrops snake bites in Uraba, Colombia. The Regional Group on Antivenom Therapy Research (REGATHER). Am J Trop Med Hyg. 1998;58(2):183–9.

    PubMed  Google Scholar 

  • Otero-Patiño R, Segura A, Herrera M, Angulo Y, León G, Gutiérrez JM, Barona J, Estrada S, Pereañez A, Quintana JC, Vargas LJ, Gómez JP, Díaz A, Suárez AM, Fernández J, Ramírez P, Fabra P, Perea M, Fernández D, Arroyo Y, Betancur D, Pupo L, Córdoba EA, Ramírez CE, Arrieta AB, Rivero A, Mosquera DC, Conrado NL, Ortiz R. Comparative study of the efficacy and safety of two polyvalent, caprylic acid fractionated [IgG and F(ab′)2] antivenoms, in Bothrops asper bites in Colombia. Toxicon. 2012;59(2):344–55.

    Article  PubMed  Google Scholar 

  • Pochanugool C, Limthongkul S, Wilde H. Management of Thai cobra bites with a single bolus of antivenin. Wilderness Environ Med. 1997;8(1):20–3.

    Article  CAS  PubMed  Google Scholar 

  • Pongpit J, Limpawittayakul P, Juntiang J, Akkawat B, Rojnuckarin P. The role of prothrombin time (PT) in evaluating green pit viper (Cryptelytrops sp.) bitten patients. Trans R Soc Trop Med Hyg. 2012;106(7):415–8.

    Article  PubMed  Google Scholar 

  • Premawardhena AP, de Silva CE, Fonseka MM, Gunatilake SB, de Silva HJ. Low dose subcutaneous adrenaline to prevent acute adverse reactions to antivenom serum in people bitten by snakes: randomised, placebo controlled trial. BMJ. 1999;318(7190):1041–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rojnuckarin P, Mahasandana S, Intragumtornchai T, Sutcharitchan P, Swasdikul D. Prognostic factors of green pit viper bites. Am J Trop Med Hyg. 1998;58(1):22–5.

    CAS  PubMed  Google Scholar 

  • Rojnuckarin P, Chanthawibun W, Noiphrom J, Pakmanee N, Intragumtornchai T. A randomized, double-blind, placebo-controlled trial of antivenom for local effects of green pit viper bites. Trans R Soc Trop Med Hyg. 2006;100(9):879–84.

    Article  CAS  PubMed  Google Scholar 

  • Rojnuckarin P, Banjongkit S, Chantawibun W, Akkawat B, Juntiang J, Noiphrom J, Pakmanee N, Intragumtornchai T. Green Pit Viper (Trimeresurus albolabris and T. macrops) venom antigenaemia and kinetics in human. Trop Doct 2007;37(4):207-10.

    Google Scholar 

  • Rojnuckarin P, Suteparuk S, Sibunruang S. Diagnosis and management of venomous snakebites in Southeast Asia. Asian Biomed. 2012;6(6):795–805.

    Google Scholar 

  • Sano-Martins IS, Fan HW, Castro SC, Tomy SC, Franca FO, Jorge MT, Kamiguti AS, Warrell DA, Theakston RD. Reliability of the simple 20 minute whole blood clotting test (WBCT20) as an indicator of low plasma fibrinogen concentration in patients envenomed by Bothrops snakes. Butantan Institute Antivenom Study Group. Toxicon. 1994;32(9):1045–50.

    Article  CAS  PubMed  Google Scholar 

  • Thiansookon A, Rojnuckarin P. Low incidence of early reactions to horse-derived F(ab′)(2) antivenom for snakebites in Thailand. Acta Trop. 2008;105(2):203–5.

    Article  CAS  PubMed  Google Scholar 

  • Visudhiphan S, Dumavibhat B, Trishnananda M. Prolonged defibrination syndrome after green pit viper bite with persisting venom activity in patient’s blood. Am J Clin Pathol. 1981;75(1):65–9.

    CAS  PubMed  Google Scholar 

  • Wagstaff SC, Laing GD, Theakston RD, Papaspyridis C, Harrison RA. Bioinformatics and multiepitope DNA immunization to design rational snake antivenom. PLoS Med. 2006;3(6):e184.

    Article  PubMed Central  PubMed  Google Scholar 

  • Warrell DA. Snake venoms in science and clinical medicine. 1. Russell’s viper: biology, venom and treatment of bites. Trans R Soc Trop Med Hyg. 1989;83(6):732–40.

    Article  CAS  PubMed  Google Scholar 

  • Warrell DA. Guidelines for the management of snakebite. New Delhi: WHO regional office for Southeast Asia; 2010.

    Google Scholar 

  • WHO Expert Committee on Biological Standardization. WHO guidelines for the production, control and regulation of snake antivenom immunoglobulins. Geneva: WHO Press. Available from http://www.who.int/bloodproducts/snakeantivenoms 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ponlapat Rojnuckarin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Rojnuckarin, P. (2013). Clinical Uses of Snake Antivenoms. In: Gopalakrishnakone, P. (eds) Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6288-6_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6288-6_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6288-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics