Skip to main content
Log in

Highly Sensitive Determination for Catecholamines Using Boronate Affinity Polymer Monolith Microextraction with In-Situ Derivatization and HPLC Fluorescence Detection

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Catecholamines such as dopamine, norepinephrine and epinephrine are important neurotransmitters containing cis-diol moieties, and HPLC with fluorescence detection (HPLC-FD) has been successfully used as highly sensitive detection method for them. However, the complex matrix of biological samples is always a challenge. Boronate affinity microextraction is practical to purify and enrich cis-diol compounds. In this study, we used in-situ derivatization in boronate affinity polymer monolith microextraction (BA/PMME) to combine sample pretreatment and derivatization, then followed by HPLC-FD to develop a highly sensitive and selective determination method for catecholamines. Taking poly(3-acrylamidophenyl boronic acid-co-ethylene dimethacrylate) as BA/PMME material and TMBB-Su as labeling reagent, catecholamines could be derivatizated in polymer monolith in-situ together with the sample enrichment and purification. Comparing with commonly used solid phase extraction followed by derivatization, fewer operation steps are required and higher sensitivity was obtained with LODs as low as 0.06–0.2 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sakaguchi Y, Yoshida H, Hayama T, Itoyama M, Todoroki K, Yamaguchi M, Nohta H (2011) J Chromatogr A 1218:5581–5586

    Article  CAS  PubMed  Google Scholar 

  2. Mahata SK, Zheng H, Mahata S, Liu X, Patel KP (2016) J Endocrinol 230:309–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li X, Dunevall J, Ewing AG (2016) Angew Chem Int Ed 55:9041–9044

    Article  CAS  Google Scholar 

  4. Espina-Benitez MB, Randon J, Demesmay C et al (2017) J Chromatogr A 1494:65–76

    Article  CAS  PubMed  Google Scholar 

  5. Eisenhofer G, Kopin IJ, Goldstein DS (2004) Pharmacol Rev 56:331–349

    Article  CAS  PubMed  Google Scholar 

  6. Najmanová V, Rambousek L, Syslová K et al (2011) Chromatographia 73:143–149

    Article  CAS  Google Scholar 

  7. Wang S, Fan L, Zhou W (2010) Chromatographia 72:1121–1128

    Article  CAS  Google Scholar 

  8. Wang X, Yang S, Li Y, Zhang J, Jin Y, Zhao W, Zhang Y, Huang J, Wang P, Wu C, Zhou J (2018) J Chromatogr A 1542:28–36

    Article  CAS  PubMed  Google Scholar 

  9. Konieczna L, Pyszka M, Okońska M et al (2018) J Chromatogr A 1542:72–81

    Article  CAS  PubMed  Google Scholar 

  10. Todmal U, Sulochana SP, Zainuddin M et al (2018) Chromatographia 81:1–12

    Article  CAS  Google Scholar 

  11. Czyrski A (2017) Chromatographia 80:181–200

    Article  CAS  PubMed  Google Scholar 

  12. Wang N, Zhu C, Zhai X et al (2017) Chromatographia 80:77–85

    Article  CAS  Google Scholar 

  13. Singh V, Chaube R, Chourasia TK, Joy KP (2010) Gen Comp Endocrinol 168:46–54

    Article  CAS  PubMed  Google Scholar 

  14. Wood AT, Hall MR (2000) J Chromatogr B Biomed Sci Appl 744:221–225

    Article  CAS  PubMed  Google Scholar 

  15. Huang HM, Lin CH (2005) J Chromatogr B Analyt Technol Biomed Life Sci 816:113–119

    Article  CAS  PubMed  Google Scholar 

  16. Zhang JY, Chen XG, Hu ZD, Ma X (2002) Anal Chim Acta 471:203–209

    Article  CAS  Google Scholar 

  17. Chan E, Wee PY, Ho PY, Ho PC (2000) J Chromatogr B 749:179–189

    Article  CAS  Google Scholar 

  18. Yoshitake T, Kehr J, Todoroki K, Nohta H, Yamaguchi M (2006) Biomed Chromatogr 20:267–281

    Article  CAS  PubMed  Google Scholar 

  19. Hirano Y, Tsunoda M, Funatsu T, Imai K (2005) J Chromatogr B 819:41–46

    Article  CAS  Google Scholar 

  20. Mravec B, Tillinger A, Kvetnansky R (2012) Neurophysiology 44:216–220

    Article  CAS  Google Scholar 

  21. Zhang G, Zhang Y, Ji C, McDonald T, Walton J, Groeber EA, Steenwyk RC, Lin Z (2012) J Chromatogr B 895:186–190

    Article  CAS  Google Scholar 

  22. De Jong WHA, De Vries EGE, Wolffenbuttel BHR, Kema IP (2010) J Chromatogr B 878:1506–1512

    Article  CAS  Google Scholar 

  23. Sabbioni C, Saracino MA, Mandrioli R, Pinzauti S, Furlanetto S, Gerra G, Raggi MA (2004) J Chromatogr A 1032:65–71

    Article  CAS  PubMed  Google Scholar 

  24. Wang X, Ma Q, Li M, Chang C, Bai Y, Feng Y, Liu H (2013) J Chromatogr A 1317:121–128

    Article  CAS  PubMed  Google Scholar 

  25. Gamoh K, Yamaguchi I, Takatsuto S (1994) Anal Sci 10:913–917

    Article  CAS  Google Scholar 

  26. Ding J, Mao L, Yuan B (2013) Plant Methods 9:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang K, Han C, Han C, Li J, Wu Z, Liu Y (2011) Microchim Acta 174:421–427

    Article  CAS  Google Scholar 

  28. Campins-Falco P, Herraez-Hernandez R, Verdu-Andres J, Chafer-Pericas C (2009) Anal Bioanal Chem 394:557–565

    Article  CAS  PubMed  Google Scholar 

  29. Nagy T, Kuki Á, Nagy L et al (2018) J Mass Spectrom 53:240–246

    Article  CAS  PubMed  Google Scholar 

  30. Zheng L, Zhao XE, Ji W et al (2018) J Chromatogr A 1532:30–39

    Article  CAS  PubMed  Google Scholar 

  31. Huang X, Guo XF, Wang H, Zhang HS (2014) Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.11.038

    Article  Google Scholar 

  32. Zhang ZX, Gao PF, Guo XF, Wang H, Zhang HS (2011) Anal Bioanal Chem 401:1905–1914

    Article  CAS  PubMed  Google Scholar 

  33. Li XS, Li S, Kellermann G (2017) Anal Bioanal Chem 409:2859–2871

    Article  CAS  PubMed  Google Scholar 

  34. Jiang L, Chen Y, Chen Y, Ma M, Tan Y, Tang H, Chen B (2015) Talanta 144:356–362

    Article  CAS  PubMed  Google Scholar 

  35. Konieczna L, Roszkowska A, Niedzwiecki M, Baczek T (2016) J Chromatogr A 1431:111–121

    Article  CAS  PubMed  Google Scholar 

  36. Fotopoulou MA, loannou PC (2002) Anal Chim Acta 462:179–185

    Article  CAS  Google Scholar 

  37. Yang X, Hu Y, Li G (2014) J Chromatogr A 1342:37–43

    Article  CAS  PubMed  Google Scholar 

  38. Fonseca BM, Rodrigues M, Cristovao AC, Goncalves D, Fortuna A, Bernardino L, Falcao A, Alves G (2017) J Chromatogr B 1049–1050:51–59

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Nature Science Foundation of China (Grant Numbers 31670370 and 21777126) and the Natural Science Foundation of Hubei Province, China (2014CFA002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, WL., Xia, LJ., Huang, X. et al. Highly Sensitive Determination for Catecholamines Using Boronate Affinity Polymer Monolith Microextraction with In-Situ Derivatization and HPLC Fluorescence Detection. Chromatographia 81, 1381–1389 (2018). https://doi.org/10.1007/s10337-018-3592-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3592-3

Keywords

Navigation