Skip to main content
Log in

Rapid Method for Simultaneous Determination of Inositol Phosphates by IPC-ESI–MS/MS and Its Application in Nutrition and Genetic Research

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Inositol phosphates (InsPs) have important biological functions and multiple nutritional effects. Breeding and nutrition studies of InsPs require a simple, rapid, and accurate method for high-throughput quantification. Here, we developed an ion-pair chromatography/tandem mass spectrometry (IPC/ESI–MS/MS) method for the simultaneous separation and determination of each InsP. A highly volatile ion-pair reagent (dihexylammonium acetate, DHAA) was applied to separate InsP1–InsP6, which were then quantified by multiple reaction monitoring (MRM) in negative ESI mode. This method could simultaneously detect InsP1–InsP6 within 15 min and exhibited a wide linearity (typically 0.3–1200 pmol). The lower limit of detection was 0.3 pmol for all InsPs, excluding InsP2 (0.15 pmol) and InsP6 (3 pmol). The method accuracy of all analytes ranged between 87 and 111% with the inter- and intra-day precision of 0.9–15 and 2.2–11%, respectively. This method was successfully applied to quantitate InsPs in different types of crop seeds, organs, and a maize inbred germplasm collection composed of hundreds of inbred lines, showing its potential for promoting the nutrition and genetic research of InsPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Raboy V (2001) Seeds for a better future: ‘low phytate’ grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6(10):458–462

    Article  CAS  Google Scholar 

  2. Turner BL, Richardson AE, Mullaney EJ (eds) (2006) Inositol phosphates: linking agriculture and the environment. CABI

  3. Gillaspy G (2013) The Role of Phosphoinositides and Inositol Phosphates in Plant Cell Signaling. In: Capelluto DGS (ed) Lipid-mediated Protein Signaling, vol 991., Advances in Experimental Medicine and BiologySpringer, Netherlands, pp 141–157

    Chapter  Google Scholar 

  4. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu F-F, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468(7322):400–405

    Article  CAS  Google Scholar 

  5. Dersjant-Li Y, Awati A, Schulze H, Partridge G (2015) Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. J Sci Food Agric 95(5):878–896

    Article  CAS  Google Scholar 

  6. Kruger J, Taylor JRN, Du X, De Moura FF, Lönnerdal B, Oelofse A (2013) Effect of phytate reduction of sorghum, through genetic modification, on iron and zinc availability as assessed by an in vitro dialysability bioaccessibility assay, CaCO2 cell uptake assay, and suckling rat pup absorption model. Food Chem 141(2):1019–1025

    Article  CAS  Google Scholar 

  7. Park H-R, Ahn H-J, Kim S-H, Lee C-H, Byun M-W, Lee G-W (2006) Determination of the phytic acid levels in infant foods using different analytical methods. Food Control 17(9):727–732

    Article  CAS  Google Scholar 

  8. Bronner F, Harris RS, Maletskos CJ, Benda CE (1954) Studies in calcium metabolism: effect of food phytates on calcium 45 uptake in children on low-calcium breakfasts. J Nutr 54(4):523–542

    CAS  Google Scholar 

  9. Kim J, Paik HY, Joung H, Woodhouse LR, Li S, King JC (2007) Effect of dietary phytate on zinc homeostasis in young and elderly Korean women. J Am Coll Nutr 26(1):1–9

    Article  CAS  Google Scholar 

  10. Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PPN, Sheridan WF, Ertl DS (2000) Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol 124(1):355–368

    Article  CAS  Google Scholar 

  11. Shunmugam ASK, Liu X, Stonehouse R, Tar’an B, Bett KE, Sharpe AG, Warkentin TD (2015) Mapping seed phytic acid concentration and iron bioavailability in a pea recombinant inbred line population. Crop Sci 55(2):828–836

    Article  CAS  Google Scholar 

  12. Kusuda H, Koga W, Kusano M, Oikawa A, Saito K, Hirai MY, Yoshida KT (2015) Ectopic expression of myo-inositol 3-phosphate synthase induces a wide range of metabolic changes and confers salt tolerance in rice. Plant Sci 232:49–56

    Article  CAS  Google Scholar 

  13. Markiewicz LH, Honke J, Haros M, Świątecka D, Wróblewska B (2013) Diet shapes the ability of human intestinal microbiota to degrade phytate—in vitro studies. J Appl Microbiol 115(1):247–259

    Article  CAS  Google Scholar 

  14. Sanz-Penella JM, Frontela C, Ros G, Martinez C, Monedero V, Haros M (2012) Application of bifidobacterial phytases in infant cereals: effect on phytate contents and mineral dialyzability. J Agric Food Chem 60(47):11787–11792

    Article  CAS  Google Scholar 

  15. Schlemmer U, Frolich W, Prieto RM, Grases F (2009) Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 53(2):S330

    Article  Google Scholar 

  16. Blaabjerg K, Hansen-Møller J, Poulsen HD (2010) High-performance ion chromatography method for separation and quantification of inositol phosphates in diets and digesta. J Chromatogr B 878(3–4):347–354

    Article  CAS  Google Scholar 

  17. Chen Q-C (1018) Li BW (2003) Separation of phytic acid and other related inositol phosphates by high-performance ion chromatography and its applications. J Chromatogr A 1:41–52

    Google Scholar 

  18. Lehrfeld J (1994) HPLC separation and quantitation of phytic acid and some inositol phosphates in foods: problems and solutions. J Agric Food Chem 42(12):2726–2731

    Article  CAS  Google Scholar 

  19. Carlsson NG, Bergman EL, Skoglund E, Hasselblad K, Sandberg AS (2001) Rapid analysis of inositol phosphates. J Agric Food Chem 49(4):1695–1701

    Article  CAS  Google Scholar 

  20. Hamada JS (2002) Scale-up potential of ion-pair high-performance liquid chromatography method to produce biologically active inositol phosphates. J Chromatogr A 944(1–2):241–248

    Article  CAS  Google Scholar 

  21. Helfrich A, Jr Bettmer (2004) Determination of phytic acid and its degradation products by ion-pair chromatography (IPC) coupled to inductively coupled plasma-sector field-mass spectrometry (ICP-SF-MS). J Anal At Spectrom 19(10):1330

    Article  CAS  Google Scholar 

  22. Liu X, Villalta PW, Sturla SJ (2009) Simultaneous determination of inositol and inositol phosphates in complex biological matrices: quantitative ion-exchange chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 23(5):705–712

    Article  CAS  Google Scholar 

  23. Paraskova JV, Jørgensen C, Reitzel K, Pettersson J, Rydin E, Sjöberg PJR (2015) Speciation of inositol phosphates in lake sediments by ion-exchange chromatography coupled with mass spectrometry, inductively coupled plasma atomic emission spectroscopy, and 31P NMR spectroscopy. Anal Chem 87(5):2672–2677

    Article  CAS  Google Scholar 

  24. Shelor CP, Liao H, Kadjo AF, Dasgupta PK (2015) Enigmatic ion-exchange behavior of myo-inositol phosphates. Anal Chem 87(9):4851–4855

    Article  CAS  Google Scholar 

  25. Barker CJ, Illies C, Berggren P-O (2010) HPLC Separation of Inositol Polyphosphates. In: Barker JC (ed) Inositol Phosphates and Lipids: Methods and Protocols. Humana Press, Totowa, pp 21–46

    Chapter  Google Scholar 

  26. Simonet BM, Ríos A, Grases F, Valcárcel M (2003) Determination of myo-inositol phosphates in food samples by flow injection-capillary zone electrophoresis. Electrophoresis 24(12–13):2092–2098

    Article  CAS  Google Scholar 

  27. Holčapek M, Jandera P, Zderadička P (2001) High performance liquid chromatography–mass spectrometric analysis of sulphonated dyes and intermediates. J Chromatogr A 926(1):175–186

    Article  Google Scholar 

  28. Holcapek M, Volna K, Jandera P, Kolarova L, Lemr K, Exner M, Cirkva A (2004) Effects of ion-pairing reagents on the electrospray signal suppression of sulphonated dyes and intermediates. J Mass Spectrom 39(1):43–50

    Article  CAS  Google Scholar 

  29. Kumar V, Makkar HP, Devappa RK, Becker K (2011) Isolation of phytate from Jatropha curcas kernel meal and effects of isolated phytate on growth, digestive physiology and metabolic changes in Nile tilapia (Oreochromis niloticus L.). Food Chem Toxicol 49(9):2144–2156

    Article  CAS  Google Scholar 

  30. And CFDE Guidances (Drugs): Q2 (R1) Validation of Analytical Procedures: Text and Methodology

  31. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  32. Costa-Bauza A, Grases F, Gomila I, Rodriguez A, Prieto RM, Tur F (2012) A simple and rapid colorimetric method for determination of phytate in urine. Urol Res 40(6):663–669

    Article  CAS  Google Scholar 

  33. Pontoppidan K, Pettersson D, Sandberg A-S (2007) The type of thermal feed treatment influences the inositol phosphate composition. Anim Feed Sci Technol 132(1–2):137–147

    Article  CAS  Google Scholar 

  34. Frontela C, García-Alonso FJ, Ros G, Martínez C (2008) Phytic acid and inositol phosphates in raw flours and infant cereals: the effect of processing. J Food Compost Anal 21(4):343–350

    Article  CAS  Google Scholar 

  35. Guse AH, Goldwich A, Weber K, Mayr GW (1995) Non-radioactive, isomer-specific inositol phosphate mass determinations: high-performance liquid chromatography-micro-metal-dye detection strongly improves speed and sensitivity of analyses from cells and micro-enzyme assays. J Chromatogr B Biomed Appl 672(2):189–198

    Article  CAS  Google Scholar 

  36. Phillippy BQ, Johnston MR, Tao SH, Fox MRS (1988) Inositol phosphates in processed foods. J Food Sci 53(2):496–499

    Article  CAS  Google Scholar 

  37. Kim SI, Tai TH (2010) Genetic analysis of two OsLpa1-like genes in Arabidopsis reveals that only one is required for wild-type seed phytic acid levels. Planta 232(5):1241–1250

    Article  CAS  Google Scholar 

  38. Kwanyuen P, Burton J (2005) A simple and rapid procedure for phytate determination in soybeans and soy products. J Amer Oil Chem Soc 82(2):81–85

    Article  CAS  Google Scholar 

  39. Phillippy BQ (2003) Inositol phosphates in foods. Adv Food Nutr Res 45:1–60

    Article  CAS  Google Scholar 

  40. Shi J, Wang H, Wu Y, Hazebroek J, Meeley RB, Ertl DS (2003) The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol 131(2):507–515

    Article  CAS  Google Scholar 

  41. Pedrosa MM, Cuadrado C, Burbano C, Allaf K, Haddad J, Gelencsér E, Takács K, Guillamón E, Muzquiz M (2012) Effect of instant controlled pressure drop on the oligosaccharides, inositol phosphates, trypsin inhibitors and lectins contents of different legumes. Food Chem 131(3):862–868

    Article  CAS  Google Scholar 

  42. Yang X, Gao S, Xu S, Zhang Z, Prasanna B, Li L, Li J, Yan J (2011) Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breeding 28(4):511–526

    Article  Google Scholar 

  43. Ahmad I, Muhammad F (2013) Breeding bread wheat for low phytic acid using full diallel crosses. Sarhad J Agric 29(1):33–42

    Google Scholar 

  44. Dhole VJ, Reddy KS (2015) Genetic variation for phytic acid content in mungbean (Vigna radiata L. Wilczek). Crop J 3(2):157–162

    Article  Google Scholar 

  45. Ahmad I, Mohammad F, Zeb A, Noorka IR, Jadoon SA (2013) Determination and inheritance of phytic acid as marker in diverse genetic group of bread wheat. American Am J Mol Biol 3(03):158

    Article  Google Scholar 

  46. Kasim AB, Edwards HM (1998) The analysis for inositol phosphate forms in feed ingredients. J Sci Food Agric 76(1):1–9

    Article  CAS  Google Scholar 

  47. Shi J, Wang H, Hazebroek J, Ertl DS, Harp T (2005) The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J 42

  48. Zhang S, Yang W, Zhao Q, Zhou X, Jiang L, Ma S, Liu X, Li Y, Zhang C, Fan Y, Chen R (2016) Analysis of weighted co-regulatory networks in maize provides insights into new genes and regulatory mechanisms related to inositol phosphate metabolism. BMC Genom 17(1):129

    Article  Google Scholar 

  49. Woyengo TA, Nyachoti CM (2013) Review: anti-nutritional effects of phytic acid in diets for pigs and poultry: current knowledge and directions for future research. Can J Anim Sci 93(1):9–21

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Special Program for GMO Development of China (Grant Number 2014ZX08003-002), the National Basic Research Program of China (Grant Number 2014CB138205), and the National Natural Science Foundation of China (Grant Number 31501392).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rumei Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1,043 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Yang, W., Zhao, Q. et al. Rapid Method for Simultaneous Determination of Inositol Phosphates by IPC-ESI–MS/MS and Its Application in Nutrition and Genetic Research. Chromatographia 80, 275–286 (2017). https://doi.org/10.1007/s10337-017-3238-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-017-3238-x

Keywords

Navigation