Skip to main content
Log in

Enantioseparation of Chiral Sulfoxides on Amylose-Based Columns: Comparison of Normal Phase Liquid Chromatography and Supercritical Fluid Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

We present enantioseparation of a series of racemic sulfoxides on three different amylose-based polysaccharide columns. Two of them have the amylose units modified with dimethylphenyl carbamoyl groups (Chiralpak AD-H and Chiralpak IA), while the third one possesses a carbamoyl moiety with an additional chiral centre (Chiralpak AS-H). The enantioseparation of selected analytes was achieved in high-performance liquid chromatography (HPLC) and the full analyte set was enantiomerically resolved using supercritical fluid chromatography (SFC). Comparing the results obtained in both modes, we show that enantioseparation under SFC conditions is superior to HPLC mode in terms of speed, while retaining excellent enantioselectivity and resolution. Faster elution of analytes was observed on increasing the polarity of the co-solvent (modifier) in the mobile phase. This trend is apparent in both chromatographic modes. Documenting the important role of the additional chiral centre, Chiralpak AS-H provided the best chromatographic parameters resulting in the enantioseparation of all analytes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu Y, Gu X-H (2011) Pharmacology of chiral drugs. In: Chiral drugs. Wiley, New York, pp. 323–345

  2. Geditz MCK, Lindner W, Lämmerhofer M, Heinkele G, Kerb R, Ramharter M, Schwab M, Hofmann U (2014) Simultaneous quantification of mefloquine (+)- and (−)-enantiomers and the carboxy metabolite in dried blood spots by liquid chromatography/tandem mass spectrometry. J Chromatogr B 968:32–39

    Article  CAS  Google Scholar 

  3. Lorenz H, Seidel-Morgenstern A (2014) Processes to separate enantiomers. Angew Chem Int Ed 53:1218–1250

    Article  CAS  Google Scholar 

  4. Bentley R (2005) Role of sulfur chirality in the chemical processes of biology. Chem Soc Rev 34:609–624

    Article  CAS  Google Scholar 

  5. Mojr V, Herzig V, Buděšínský M, Cibulka R, Kraus T (2010) Flavin-cyclodextrin conjugates as catalysts of enantioselective sulfoxidations with hydrogen peroxide in aqueous media. Chem Commun 46:7599–7601

    Article  CAS  Google Scholar 

  6. Tomanová P, Šturala J, Buděšínský M, Cibulka R (2015) A click chemistry approach towards Flavin-cyclodextrin conjugates—bioinspired sulfoxidation catalysts. Molecules 20:19667–19848

    Article  Google Scholar 

  7. Cibulka R (2015) Artificial Flavin systems for chemoselective and stereoselective oxidations. Eur J Org Chem 2015:915–932

    Article  CAS  Google Scholar 

  8. Holakovský R, März M, Cibulka R (2015) Urea derivatives based on a 1,1′-binaphthalene skeleton as chiral solvating agents for sulfoxides. Tetrahedron: Asymm 26:1328–1334

  9. Pirkle WH, House DW (1979) Chiral high-performance liquid chromatographic stationary phases. 1. Separation of the enantiomers of sulfoxides, amines, amino acids, alcohols, hydroxy acids, lactones, and mercaptans. J Org Chem 44:1957–1960

    Article  CAS  Google Scholar 

  10. Welch CJ, Szczerba T, Perrin SR (1997) Some recent high-performance liquid chromatography separations of the enantiomers of pharmaceuticals and other compounds using the Whelk-O 1 chiral stationary phase. J Chromatogr A 758:93–98

    Article  Google Scholar 

  11. Lourenço TC, Armstrong DW, Cass QB (2010) Enantiomeric resolution of a chiral sulfoxide series by LC on synthetic polymeric columns with multimodal elution. Chromatographia 71:361–372

    Article  Google Scholar 

  12. Lienne M, Caude M, Rosset R, Tambuté A (1989) Direct resolution of anthelmintic drug enantiomers on chiral-AGP protein-bonded chiral stationary phase. J Chromatogr A 472:265–270

    Article  CAS  Google Scholar 

  13. Mitchell C, Desai M, McCulla R, Jenks W, Armstrong D (2002) Use of native and derivatized cyclodextrin chiral stationary phases for the enantioseparation of aromatic and aliphatic sulfoxides by high performance liquid chromatography. Chromatographia 56:127–135

    Article  CAS  Google Scholar 

  14. Berthod A, Xiao TL, Liu Y, Jenks WS, Armstrong DW (2002) Separation of chiral sulfoxides by liquid chromatography using macrocyclic glycopeptide chiral stationary phases. J Chromatogr A 955:53–69

    Article  CAS  Google Scholar 

  15. Meričko D, Lehotay J, Čižmárik J (2008) Enantioseparation of chiral sulfoxides using teicoplanine chiral stationary phases and kinetic study of decomposition in human plasma. Pharmazie 63:854–859

    Google Scholar 

  16. Meričko D, Lehotay J, Skačáni I, Armstrong DW (2009) Thermodynamic approach to enantioseparation of aryl-methyl sulfoxides on teicoplanin aglycone stationary phase. J Liq ChromRelat Tech 32:331–347

    Article  Google Scholar 

  17. Gegenava M, Chankvetadze L, Farkas T, Chankvetadze B (2014) Enantioseparation of selected chiral sulfoxides in high-performance liquid chromatography with polysaccharide-based chiral selectors in polar organic mobile phases with emphasis on enantiomer elution order. J Sep Sci 37:1083–1088

    Article  CAS  Google Scholar 

  18. Cass QB, Batigalhia F (2003) Enantiomeric resolution of a series of chiral sulfoxides by high-performance liquid chromatography on polysaccharide-based columns with multimodal elution. J Chromatogr A 987:445–452

    Article  CAS  Google Scholar 

  19. Chankvetadze B, Yamamoto C, Okamoto Y (2000) Extremely high enantiomer recognition in HPLC separation of racemic 2-(benzylsulfinyl)benzamide using cellulose tris(3,5-dichlorophenylcarbamate) as a chiral stationary phase. Chem Lett 29:1176–1177

    Article  Google Scholar 

  20. Chankvetadze B, Yamamoto C, Okamoto Y (2001) Enantioseparation of selected chiral sulfoxides using polysaccharide-type chiral stationary phases and polar organic, polar aqueous–organic and normal-phase eluents. J Chromatogr A 922:127–137

    Article  CAS  Google Scholar 

  21. Küsters E, Loux V, Schmid E, Floersheim P (1994) Enantiomeric separation of chiral sulphoxides: screening of cellulose-based sorbents with particular reference to cellulose tribenzoate. J Chromatogr A 666:421–432

    Article  Google Scholar 

  22. Tanaka M, Yamazaki H, Hakusui H (1995) Direct HPLC separation of enantiomers of pantoprazole and other benzimidazole sulfoxides using cellulose-based chiral stationary phases in reversed-phase mode. Chirality 7:612–615

    Article  CAS  Google Scholar 

  23. Tanaka K, Muraoka T, Otubo Y, Takahashi H, Ohnishi A (2016) HPLC enantioseparation on a homochiral MOF-silica composite as a novel chiral stationary phase. RSC Adv 6:21293–21301

    Article  CAS  Google Scholar 

  24. del Nozal MJ, Toribio L, Bernal JL, Nieto EM, Jiménez JJ (2002) Separation of albendazole sulfoxide enantiomers by chiral supercritical-fluid chromatography. J Biochem Biophys Methods 54:339–345

    Article  Google Scholar 

  25. Liu Y, Berthod A, Mitchell CR, Xiao TL, Zhang B, Armstrong DW (2002) Super/subcritical fluid chromatography chiral separations with macrocyclic glycopeptide stationary phases. J Chromatogr A 978:185–204

    Article  CAS  Google Scholar 

  26. Toribio L, Alonso C, del Nozal MJ, Bernal JL, Jiménez JJ (2006) Enantiomeric separation of chiral sulfoxides by supercritical fluid chromatography. J Sep Sci 29:1363–1372

    Article  CAS  Google Scholar 

  27. De Klerck K, Mangelings D, Vander Heyden Y (2012) Supercritical fluid chromatography for the enantioseparation of pharmaceuticals. J Pharm Biomed Anal 69:77–92

    Article  Google Scholar 

  28. De Klerck K, Vander Heyden Y, Mangelings D (2014) Pharmaceutical-enantiomers resolution using immobilized polysaccharide-based chiral stationary phases in supercritical fluid chromatography. J Chromatogr A 1328:85–97

    Article  Google Scholar 

  29. Kalíková K, Šlechtová T, Vozka J, Tesařová E (2014) Supercritical fluid chromatography as a tool for enantioselective separation; a review. Anal Chim Acta 821:1–33

    Article  Google Scholar 

  30. Lesellier E, West C (2015) The many faces of packed column supercritical fluid chromatography—a critical review. J Chromatogr A 1382:2–46

    Article  CAS  Google Scholar 

  31. Dad’ová J, Svobodová E, Sikorski M, König B, Cibulka R (2012) Photooxidation of sulfides to sulfoxides mediated by tetra-O-acetylriboflavin and visible light. ChemCatChem 4:620–623

    Article  Google Scholar 

  32. Šturala J, Boháčová S, Chudoba J, Metelková R, Cibulka R (2015) Electron-deficient heteroarenium salts: an organocatalytic tool for activation of hydrogen peroxide in oxidations. J Org Chem 80:2676–2699

    Article  Google Scholar 

  33. Belaz KRA, Coimbra M, Barreiro JC, Montanari CA, Cass QB (2008) Multimilligram enantioresolution of sulfoxide proton pump inhibitors by liquid chromatography on polysaccharide-based chiral stationary phase. J Pharm Biomed Anal 47:81–87

    Article  CAS  Google Scholar 

  34. Montanari MLC, Cass QB, Leitão A, Andricopulo AD, Montanari CA (2006) The role of molecular interaction fields on enantioselective and nonselective separation of chiral sulfoxides. J Chromatogr A 1121:64–75

    Article  CAS  Google Scholar 

  35. Guiochon G, Tarafder A (2011) Fundamental challenges and opportunities for preparative supercritical fluid chromatography. J Chromatogr A 1218:1037–1114

    Article  CAS  Google Scholar 

  36. Taylor LT (2009) Supercritical fluid chromatography for the 21st century. J Supercrit Fluids 47:566–573

    Article  CAS  Google Scholar 

  37. West KN, Wheeler C, McCarney JP, Griffith KN, Bush D, Liotta CL, Eckert CA (2001) In situ formation of alkylcarbonic acids with CO2. J Phys Chem A 105:3947–3948

    Article  CAS  Google Scholar 

  38. Wolrab D, Kohout M, Boras M, Lindner W (2013) Strong cation exchange-type chiral stationary phase for enantioseparation of chiral amines in subcritical fluid chromatography. J Chromatogr A 1289:94–104

    Article  CAS  Google Scholar 

  39. Stringham RW, Blackwell JA (1997) Factors that control successful entropically driven chiral separations in SFC and HPLC. Anal Chem 69:1414–1420

    Article  CAS  Google Scholar 

  40. Gyllenhaal O, Stefansson M (2005) Reversal of elution order for profen acid enantiomers in packed-column SFC on Chiralpak AD. Chirality 17:257–265

    Article  CAS  Google Scholar 

  41. Gargano AG, Kohout M, Macíková P, Lämmerhofer M, Lindner W (2013) Direct high-performance liquid chromatographic enantioseparation of free α-, β- and γ-aminophosphonic acids employing cinchona-based chiral zwitterionic ion exchangers. Anal Bioanal Chem 405:8027–8038

    Article  CAS  Google Scholar 

  42. Mahut M, Lindner W, Lämmerhofer M, Gargano A, Zhang T, Franco P (2012) Enantiomer and topoisomer separation of acidic compounds on anion-exchanger chiral stationary phases by HPLC and SFC. LCGC Europe 25:11

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Kohout.

Ethics declarations

The work was supported by Czech Science Foundation (Grant number 16-17689Y).

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Advances in Chromatography and Electrophoresis & Chiranal 2016 with guest editor Jan Petr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolderová, N., Neveselý, T., Šturala, J. et al. Enantioseparation of Chiral Sulfoxides on Amylose-Based Columns: Comparison of Normal Phase Liquid Chromatography and Supercritical Fluid Chromatography. Chromatographia 80, 547–557 (2017). https://doi.org/10.1007/s10337-016-3234-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3234-6

Keywords

Navigation