Skip to main content
Log in

Use of native and derivatized cyclodextrin chiral stationary phases for the enantioseparation of aromatic and aliphatic sulfoxides by high performance liquid chromatography

  • Originals
  • Column Liquid Chromatography
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

The enantioselectivity of native and derivatized cyclodextrin stationary phases for aromatic and aliphatic chiral sulfoxides was evaluated using high performance liquid chromatography (HPLC). Many sulfoxide enantiomers could be baseline resolved using the derivatized cyclodextrin stationary phases in the reverse phase mode. The most important factor influencing enantioselectivity is the presence of steric bulk alpha to the chiral center. However, substituents on an aromatic ring bonded to the sulfoxide have less pronounced effects on enantioselectivity. The 2,3-dimethyl β-cyclodextrin exhibits the broadest anantioselectivity for neutral chiral sulfoxides. Native cyclodextrins and hydroxypropyl-β-cyclodextrins were much less effective in separating this class of molecules. The hydrogen bonding ability of the organic modifier does not significantly affect enantioselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, D.W.; De Mond, W.J. Chromatogr. Sci. 1984,22, 411.

    CAS  Google Scholar 

  2. Armstrong, D.W.; Ward, T.J.; Armstrong, R.D.; Beesley, T.E.Science 1986,232, 1132.

    CAS  Google Scholar 

  3. Cyclobond Handbook, Whippany, NJ, USA,1999.

  4. Gasparrini, F.; Giovannoli, M.; Misiti, D.; Natile, G.; Palmieri, G.Tetrahedron,1984,40, 165–170.

    Article  CAS  Google Scholar 

  5. Walker, A.J.Tetrahedron 1992,3, 961–998.

    Article  CAS  Google Scholar 

  6. Stephens, P.J.; Anamouche, A.; Devlin, F.J.; Superchi, S.; Donnoli, M.I.; Rosini, C.J. Org. Chem. 2001,66, 3671–3677.

    Article  CAS  Google Scholar 

  7. Khiar, N.; Fernandez, I.; Alcudia, F.Tetrahedron Lett. 1993,34, 123–126.

    Article  CAS  Google Scholar 

  8. Hiroi, K.; Suzuki, Y.Tetrahedron Lett. 1998,39, 6499–6502.

    Article  CAS  Google Scholar 

  9. Tokunoh, R.; Sodeoka, M.; Aoe, K.; Shibasaki, M.Tetrahedron Lett. 1995,36, 8035–8038.

    Article  CAS  Google Scholar 

  10. Furia, F.; Licini, G.; Modena, G.; Motterle, R.; Nugent, W.J. Org. Chem. 1996,61, 5175–5177.

    Article  Google Scholar 

  11. Padmanabhan, S.; Lavin, R.C.; Durant, G.J.Tetrahedron: Asymmetry 2000,11, 3455.

    Article  CAS  Google Scholar 

  12. Cotton, H.; Elebring, T.; Larsson, M.; Li, L.; Sorensen, H.; von Unge, S.Tetrahedron: Asymmetry 2000,11, 3819.

    Article  CAS  Google Scholar 

  13. Colobert, F.; Tito, A.; Khiar, N.; Denni, D.; Medina, M.A.; Martin-Lomas, M.; Ruano, J.; Solladie, G.J. Org. Chem. 1998,63, 8918–8921.

    Article  CAS  Google Scholar 

  14. Pesenti, C.; Bravo, P.; Corradi, E.; Frigerio, M.; Meille, S.; Panzeri, W.; Viani, Fl.; Zanda, M.J. Org. Chem. 2001,66, 5637–5640.

    Article  CAS  Google Scholar 

  15. Baha, Y.; Saha, G.; Nakao, S.; Iwata, C.; Tanaka, T.; Ibuka, T.; Ohishi, H.; Takemoto, Y.J. Org. Chem. 2001,66, 81–88.

    Article  Google Scholar 

  16. Yamanoi, Y.; Imamoto, T.J. Org. Chem. 1997,62, 8560–8564.

    Article  CAS  Google Scholar 

  17. Delouvrie, B.; Fensterbank, L.; Lacote, E.; Malacria, M.J. Am. Chem. Soc. 1999,121, 11395–11401.

    Article  CAS  Google Scholar 

  18. Mislow, K.; Green, M.; Laur, P.; Melillo, J.; Simmons, T.; Ternay, A.J. Am. Chem. Soc. 1965,87, 1958–1976.

    Article  CAS  Google Scholar 

  19. Armstrong, D.W.; Chang, L.W.; Chang, S.C.; Wang, X.; Ibrahim, H.; Reid, G.R.; Beesley, T.E.J. Liq. Chromatogr. Related Technol. 1997,20, 3279–3295.

    CAS  Google Scholar 

  20. Goldman, M.; Kustanovich, Z.; Veinstein, A.; Tishbee, A.; Gil-Av, E.J. Am. Chem. Soc. 1982,104, 1093–1095.

    Article  CAS  Google Scholar 

  21. Gasparrini, F.; Misiti, D.; Villani, C.J. Chromatogr. A. 1995,694, 163–167.

    Article  CAS  Google Scholar 

  22. Delatour, P.; Benoit, E.; Caude, M.; Tambute, A.Chirality 1990,2, 156–160.

    Article  CAS  Google Scholar 

  23. Pirkle, W.; House, D.; Finn, J.J Chromatogr. 1980,192, 143–158.

    Article  CAS  Google Scholar 

  24. Pirkle, W.; House, D.J. Org. Chem. 1979,44, 1957–1960.

    Article  CAS  Google Scholar 

  25. Allenmark, S.; Bomgren, B.; Boren, H.; Lagerstrom, P.Anal. Biochem. 1984,136, 293–297.

    Article  CAS  Google Scholar 

  26. Kusters, E.; Loux, V.; Schmid, E.J. Chromatogr. A. 1994,666, 421–432.

    Article  Google Scholar 

  27. Chankvetadze, B.; Yamamoto, C.; Okamoto, Y.J. Chromatogr. A 2001,922, 127–137.

    Article  CAS  Google Scholar 

  28. Matlin, S.; Tiritan, E.; Crawford, A.; Cass, Q.; Boyd, D.Chirality 1994,6, 135–140.

    Article  CAS  Google Scholar 

  29. Matlin, S.; Tiritan, E.; Cass, Q.; Boyd, D.Chirality 1996,8, 147–152.

    Article  CAS  Google Scholar 

  30. Berthod, A.; Xiao, T.L.; Liu, Y.; Jenks, W.S.; Armstrong, D.W.J. Chromatogr. A.,2002,955, 53–69.

    Article  CAS  Google Scholar 

  31. Anderson, J.L.; Ding, J.; McCulla, R.; Jenks, W.S.; Armstrong, D.M.J. Chromatogr. A.,2001,946, 197–208.

    Article  Google Scholar 

  32. Rodriquez, M.A.; Liu, Y.; McCulla, R.; Jenks, W.S.; Armstrong, D.W.Electrophoresis,2002,23, 1561–1570.

    Article  Google Scholar 

  33. Capozzi, M.A.M.; Cardellicchio, C.; Naso, F.; Tortorella, P.J. Org. Chem. 2000,65, 2843–2846.

    Article  CAS  Google Scholar 

  34. Landini, D.; Modena, G.; Scorrano, G.; Taddei, F.J. Am. Chem. Soc. 1969,91, 6703–6707.

    Article  CAS  Google Scholar 

  35. Bohe, L.; Lusinchi, M.; Lusinchi, S.Tetrahedron 1999,55, 155–166.

    Article  CAS  Google Scholar 

  36. Gadwood, R.C.; Mallick, I.M.; DeWinter, A.J.J. Org. Chem. 1987,52, 774–782.

    Article  CAS  Google Scholar 

  37. Hirano, M.; Yakabe, S.; Itoh, S.; Clark, J.H.; Morimotoa, T.Synthesis 1997, 1161–1164.

  38. Klunder, J.M.; Sharpless, K.B.J. Org. Chem. 1987,52, 2598–2602.

    Article  CAS  Google Scholar 

  39. Jenks, W.S.; Lee, W.; Shutters, D.J. Phys. Chem. 1994,98, 2282–2289.

    Article  CAS  Google Scholar 

  40. Charlesworth, P.; Lee, W.; Jenks, W.S.J. Phys. Chem 1996,100, 10152–10155.

    Google Scholar 

  41. Refvik, M.D.; Froese, R.D.J.; Goddared, J.D.; Pham, H.H.; Pippert, M.F.; Schwan, A.L.J. Am. Chem. Soc. 1995,117, 184–192.

    Article  CAS  Google Scholar 

  42. Guo, Y.; Jenks, W.S.J. Org. Chem. 1997,62, 857–864.

    Article  CAS  Google Scholar 

  43. Darmanyan, A.P.; Gregory, D.D.; Guo, Y.; Jenks W.S.J. Phys. Chem. A 1997,101, 6855–6863.

    Article  CAS  Google Scholar 

  44. Guo, Y.Study on the Photolysis and Thermolysis of Alkyl Aryl Sulfoxides; Iowa State University; Ames, IA,1997, pp 278

    Google Scholar 

  45. Lee, W.; Jenks, W.S.J. Org. Chem. 2001,66, 474–480.

    Article  CAS  Google Scholar 

  46. Guo, Y.; Darmanyan, A.P.; Jenks, W.S.Tetrahedron Lett. 1997,38, 8619–8622.

    Article  CAS  Google Scholar 

  47. Cubbage, J.W.; Guo, Y.; Jenks, W.S.2001, manuscript in preparation.

  48. Hajipour, A.R.; Mallakpour, S.E.; Afrousheh, A.Tetrahedron 1999,55, 2311–2316.

    Article  CAS  Google Scholar 

  49. Oae, S.; Furukawa, N.Sulfilimines and related Derivatives, ACS Monograph 179 American Chemical Society.: Washington D.C.1983.

    Google Scholar 

  50. Amrstrong, D.W.; Zukowski, J.J. Chromatogr. A. 1994,666, 445–448.

    Article  Google Scholar 

  51. Armstrong, D.W.; DeMond, W.; Czech, B.P.Anal. Chem. 1985,57, 481–484.

    Article  CAS  Google Scholar 

  52. Armstrong, D.W.; Ward, T.J.; Czech, A.; Czech, B.P.; Bartsch, R.A.J. Org. Chem. 1985,50, 5556–5559.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, C., Desai, M., McCulla, R. et al. Use of native and derivatized cyclodextrin chiral stationary phases for the enantioseparation of aromatic and aliphatic sulfoxides by high performance liquid chromatography. Chromatographia 56, 127–135 (2002). https://doi.org/10.1007/BF02493200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02493200

Key Words

Navigation