Skip to main content

Advertisement

Log in

Analytical Methods for Characterizing the Nanoparticle–Protein Corona

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

When nanoparticles (NPs) enter a biological environment, medium components, especially proteins, compete for binding to the NP’s surface, leading to development of a new interface, commonly referred to as the “protein corona.” This rich protein shell gives the NPs a biological identity that can be very different from their synthetic one, in terms of their chemical–physical properties. Understanding NP–protein interaction is crucial for both the bioapplications and safety of nanomaterials. The protein corona provides the primary contact to the cells and their receptors. It defines in vivo fate of the delivery systems, governing the stability, immunogenicity, circulation, clearance rates and organ biodistribution of the NPs. Given its importance, the application and the development of analytical methods to investigate the protein corona are crucial. This review gives an overview of chromatographic, electrophoretic, mass spectrometric and proteomic methods because these techniques have the advantage to be able to identify and quantify individual proteins adsorbed onto the corona. This capability opens up the possibility to exploit the protein corona for specific cell targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AET:

Aminoethanethiol

BAM:

N-tert-Butylacrylamide

BBB:

Blood–brain barrier

CE:

Capillary electrophoresis

CL:

Cationic liposome

CID:

Collision-induced dissociation

CuNPs:

Copper NPs

DC-Chol:

3β-[N-(N′,N′-Dimethylaminoethane)-carbamoyl]-cholesterol

DOPC:

Dioleoylphosphocholine

DOPE:

Dioleoylphosphatidylethanolamine

1-DE:

One-dimensional gel electrophoresis

2-DE:

Two-dimensional gel electrophoresis

FFFF:

Flow field-flow fractionation

Hb:

Hemoglobin

IEC:

Ion-exchange chromatography

iTraq:

Isotope-coded tags

LIF:

Laser-induced fluorescence

MALDI-TOF:

Matrix-assisted laser desorption/ionization time-of-flight

MS:

Mass spectrometry

MudPIT:

Multidimensional protein identification technology

NIPAM:

N-Isopropylacrylamide

NP:

Nanoparticle

PBCA:

Polyisobutylcyanoacrylate

PHDCA:

Polyhexadecylcyanoacrylate

PEG:

Polyethyleneglycol

RPLC:

Reversed-phase liquid chromatography

RS:

Raman spectroscopy

SEC:

Size-exclusion chromatography

SERS:

Surface-enhanced RS

SPIONs:

Superparamagnetic iron oxide nanoparticles

References

  1. Roco MC (2008) The journal of nanoparticle research at 10 years. J Nanoparticle Res 10:1–2

    Google Scholar 

  2. Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306

    CAS  Google Scholar 

  3. Anselmann R (2001) Nanoparticles and nanolayers in commercial applications. J Nanoparticle Res 3:329–336

    CAS  Google Scholar 

  4. Ye-Qin Z, Wang YF, Jiang XD (2008) The application of nanoparticles in biochips. Recent Pat Biotechnol 2:55–59

    Google Scholar 

  5. Treuel L, Nienhaus GU (2012) Toward a molecular understanding of NPs-protein interactions. Biophys Rev 4:137–147

    CAS  Google Scholar 

  6. Wang Y (1991) Nonlinear optical properties of nanometer-sized semiconductor clusters. Acc Chem Res 24:133–139

    CAS  Google Scholar 

  7. Steigerwald ML, Brus LE (1990) Semiconductor crystallites: a class of large molecules. Acc Chem Res 23:183–188

    CAS  Google Scholar 

  8. Weller H (1993) Quantized semiconductor particles: a novel state of matter for materials science. Adv Mater 5:88–95

    CAS  Google Scholar 

  9. Langer R (1998) Drug delivery and targeting. Nature 392:5–10

    CAS  Google Scholar 

  10. Sugano K, Kansy M, Artursson P, Avdeef A, Bendels S, Di L, Ecker GF, Faller B, Fischer H, Gerebtzoff G, Lennernaes H, Senner F (2010) Coexistence of passive and carriermediated processes in drug transport. Nat Rev Drug Discov 9:597–614

    CAS  Google Scholar 

  11. Mahon E, Salvati A, Baldelli Bombelli F, Lynch I, Dawson KA (2012) Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J Control Release 16:1164–1174

    Google Scholar 

  12. Sokolova V, Epple M (2008) Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem 47:1382–1395

    CAS  Google Scholar 

  13. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    CAS  Google Scholar 

  14. Ashley CE, Carnes EC, Philips GK, Padilla D, Durfee PN, Brown PA, Hanna TN, Liu J, Phillips B, Carter MB, Carroll NJ, Jiang X, Dunphy DR, Willman CL, Petsev DN, Evans DG, Parikh AN, Chackerian B, Wharton W, Peabody DS, Brinker CJ (2011) The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle supported lipid bilayers. Nat Mater 10:389–397

    CAS  Google Scholar 

  15. Dengler EC, Liu J, Kerwin A, Torres S, Olcott CM, Bowman BN, Armijo L, Gentry K, Wilkerson J, Wallace J, Jiang X, Carnes EC, Brinker CJ, Milligan ED (2013) Mesoporous silica-supported lipid bilayers (protocells) for DNA cargo delivery to the spinal cord. J Control Release 168:209–224

    CAS  Google Scholar 

  16. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the NPs-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055

    CAS  Google Scholar 

  17. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    CAS  Google Scholar 

  18. Cedervall T, Lynch I, Foy M, Berggård T, Donnelly SC, Cagney G, Linse S, Dawson KA (2007) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed Eng 46:5754–5756

    CAS  Google Scholar 

  19. Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett 7:914–920

    CAS  Google Scholar 

  20. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270

    CAS  Google Scholar 

  21. Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell“sees” in bionanoscience. J Am Chem Soc 132:5761–5768

    CAS  Google Scholar 

  22. Caracciolo G, Callipo L, Candeloro De Sanctis S, Cavaliere C, Pozzi D, Laganà A (2010) Surface adsorption of protein corona controls the cell internalization mechanism of DC-Chol-DOPE/DNA lipoplexes in serum. Biochim Biophys Acta 1798:536–543

    CAS  Google Scholar 

  23. Capriotti AL, Caracciolo G, Caruso G, Cavaliere C, Pozzi D, Samperi R, Laganà A (2012) Label-free quantitative analysis for studying the interactions between nanoparticles and plasma proteins. Anal Bioanal Chem 405:635–645

    Google Scholar 

  24. Chittur KK (1998) FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials 19:357–369

    CAS  Google Scholar 

  25. Wang T, Bai J, Jiang X, Nienhaus GU (2012) Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano 6:1251–1259

    CAS  Google Scholar 

  26. Zhang J, Yan YB (2005) Probing conformational changes of proteins by quantitative second-derivative infrared spectroscopy. Anal Biochem 340:89–98

    CAS  Google Scholar 

  27. Shao M, Lu L, Wang H, Luo S, Duo Duo Ma D (2009) Microfabrication of a new sensor based on silver and silicon nanomaterials, and its application to the enrichment and detection of bovine serum albumin via surface-enhanced Raman scattering. Microchim Acta 164:157–160

    CAS  Google Scholar 

  28. Mátyus L, Szöllösi J, Jenei A (2006) Steady-state fluorescence quenching applications for studying protein structure and dynamics. J Photochem Photobiol B Biol 83:223–236

    Google Scholar 

  29. Royer CA (2006) Probing protein folding and conformational transitions with fluorescence. Chem Rev 106:1769–1784

    CAS  Google Scholar 

  30. Greenfield NJ (1999) Applications of circular dichroism in protein and peptide analysis. Trends Anal Chem 18:236–244

    CAS  Google Scholar 

  31. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139

    CAS  Google Scholar 

  32. Shang L, Wang Y, Jiang J, Dong S (2007) pH-dependent protein conformational changes in albumin—gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23:2714–2721

    CAS  Google Scholar 

  33. Hellstrand E, Lynch I, Andersson A, Drakenberg T, Dahlbäck B, Dawson KA, Linse S, Cedervall T (2009) Complete high-density lipoproteins in nanoparticle corona. FEBS J 276:3372–3378

    CAS  Google Scholar 

  34. Stayton PS, Drobny GP, Shaw WJ, Long JR, Gilbert M (2003) Molecular recognition at the protein-hydroxyapatite interface. Crit Rev Oral Biol Med 14:370–376

    Google Scholar 

  35. Cheng Y, Wang M, Borghs G, Chen H (2011) Gold nanoparticle dimers for plasmon sensing. Langmuir 27:7884–7891

    CAS  Google Scholar 

  36. Baier G, Costa C, Zeller A, Baumann D, Sayer C, Araujo PHH, Mailänder V, Musyanovych A, Landfester K (2011) BSA adsorption on differently charged polystyrene nanoparticles using isothermal titration calorimetry and the influence on cellular uptake. Macromol Biosci 11:628–638

    CAS  Google Scholar 

  37. Bhattacharya J, Choudhuri U, Siwach O, Sen P, Dasgupta AK (2006) Interaction of hemoglobin and copper nanoparticles: implications in hemoglobinopathy. Nanomedicine 2:191–199

    CAS  Google Scholar 

  38. Rezwan K, Studart AR, Voros J, Gauckler LJ (2005) Change of ζ potential of biocompatible colloidal oxide particles upon adsorption of bovine serum albumin and lysozyme. J Phys Chem B 109:14469–14474

    CAS  Google Scholar 

  39. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    CAS  Google Scholar 

  40. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3:40–47

    CAS  Google Scholar 

  41. Klein J (2007) Probing the interactions of proteins and nanoparticles. Proc Natl Acad Sci USA 104:2029–2030

    CAS  Google Scholar 

  42. Walkey CD, Chan WCW (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799

    CAS  Google Scholar 

  43. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Baldelli Bombelli F, Laurent S (2011) Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637

    CAS  Google Scholar 

  44. Fenoglio I, Fubini B, Ghibaudi EM, Turci F (2011) Multiple aspects of the interaction of biomacromolecules with inorganic surfaces. Adv Drug Deliv Rev 63:1186–1209

    CAS  Google Scholar 

  45. Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA (2007) The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 134–135:167–174

    Google Scholar 

  46. Lévy R, Thanh NT, Doty RC, Hussain I, Nichols RJ, Schiffrin DJ, Brust M, Fernig DG (2004) Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J Am Chem Soc 126:10076–10084

    Google Scholar 

  47. Li L, Mu Q, Zhang B, Yan B (2010) Analytical strategies for detecting NPs-protein interactions. Analyst 135:1519–1530

    CAS  Google Scholar 

  48. Ferreira SA, Oslakovic C, Cukalevski R, Frohm B, Dahlbäck B, Linse S, Gama FM, Cedervall T (2012) Biocompatibility of mannan nanogel-safe interaction with plasma proteins. Biochim Biophys Acta 1820:1043–1051

    CAS  Google Scholar 

  49. Liu W, Rose J, Plantevin S, Auffan M, Bottero JY, Vidaud C (2013) Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona? Nanoscale 5:1658–1668

    CAS  Google Scholar 

  50. Aubin-Tam ME, Hamad-Schifferli K (2005) Gold nanoparticle-cytochrome C complexes: the effect of nanoparticle ligand charge on protein structure. Langmuir 21:12080–12084

    CAS  Google Scholar 

  51. Aleksenko SS, Shmykov AY, Oszwałdowski S, Timerbaev AR (2012) Interactions of tumour-targeting nanoparticles with proteins: potential of using capillary electrophoresis as a direct probe. Metallomics 4:1141–1148

    CAS  Google Scholar 

  52. Kim HR, Andrieux K, Delomenie C, Chacun H, Appel M, Desmaële D, Taran F, Georgin D, Couvreur P, Taverna M (2007) Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and Protein Lab-on-chip system. Electrophoresis 28:2252–2261

    CAS  Google Scholar 

  53. Olivier JC, Vauthier C, Taverna M, Puisieux F, Ferrier D, Couvreur P (1996) Stability of orosomucoid-coated polyisobutylcyanoacrylate nanoparticles in the presence of serum. J Control Release 40:157–168

    CAS  Google Scholar 

  54. Kim HR, Andrieux K, Gil S, Taverna M, Chacun H, Desmaële D, Taran F, Georgin D, Couvreur P (2007) Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: role of apolipoproteins in receptor-mediated endocytosis. Biomacromolecules 8:793–799

    CAS  Google Scholar 

  55. Brambilla D, Verpillot R, Taverna M, De Kimpe L, Le Droumaguet B, Nicolas J, Canovi M, Gobbi M, Mantegazza F, Salmona M, Nicolas V, Scheper W, Couvreur P, Andrieux K (2010) New method based on capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) to monitor interaction between nanoparticles and the amyloid-β peptide. Anal Chem 82:10083–10089

    CAS  Google Scholar 

  56. Brambilla D, Verpillot R, Le Droumaguet B, Nicolas J, Taverna M, Kóňa J, Lettiero B, Hashemi SH, De Kimpe L, Canovi M, Gobbi M, Nicolas V, Scheper W, Moghimi SM, Tvaroška I, Couvreur P, Andrieux K (2012) PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: toward engineering of functional nanomedicines for Alzheimer’s disease. ACS Nano 6:5897–5908

    CAS  Google Scholar 

  57. Chang CW, Tseng WL (2010) Gold nanoparticle extraction followed by capillary electrophoresis to determine the total, free, and protein-bound aminothiols in plasma. Anal Chem 82:2696–2702

    CAS  Google Scholar 

  58. Boulos S (2014) Investigations of the interaction of gold nanoparticles with proteins, cells, and tissues. http://hdl.handle.net/2142/46800

  59. Caracciolo G, Pozzi D, Candeloro De Sanctis S, Capriotti AL, Caruso G, Samperi R, Laganà A (2011) Effect of membrane charge density on the protein corona of cationic liposomes: interplay between cationic charge and surface area. Appl Phys Lett 99:033702–033703

    Google Scholar 

  60. Blunk T, Hochstrasser DF, Sanchez JC, Muller BW, Muller RH (1993) Colloidal carriers for intravenous drug targeting: plasma protein adsorption patterns on surface-modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 14:1382–1387

    CAS  Google Scholar 

  61. Diederichs JE (1996) Plasma protein adsorption patterns on liposomes: establishment of analytical procedure. Electrophoresis 17:607–611

    CAS  Google Scholar 

  62. Goppert TM, Muller RH (2003) Plasma protein adsorption of Tween 80- and poloxamer 188-stabilized solid lipid nanoparticles. J Drug Target 11:225–231

    Google Scholar 

  63. Gilmorea JM, Washburna MP (2010) Advances in shotgun proteomics and the analysis of membranes proteomes. J Proteomics 73:2078–2091

    Google Scholar 

  64. Li X, pizarro A, Grosser T (2009) Elective affinities-bioinformatic analysis of proteomic mass spectrometry data. Arch Physiol Biochem 115:311–319

    CAS  Google Scholar 

  65. Yang JA, Johnson BJ, Wu S, Woods WS, George JM, Murphy CJ (2013) Study of wild-type α-synuclein binding and orientation on gold nanoparticles. Langmuir 29:4603–4615

    CAS  Google Scholar 

  66. Walkey CD, Olsen JB, Guo H, Emili A, Chan WC (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134:2139–2147

    CAS  Google Scholar 

  67. Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber RH (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5:7155–7167

    CAS  Google Scholar 

  68. Capriotti AL, Caracciolo G, Cavaliere C, Crescenzi C, Pozzi D, Laganà A (2011) Shotgun proteomic analytical approach for studying proteins adsorbed onto liposome surface. Anal Bioanal Chem 401:1195–1202

    CAS  Google Scholar 

  69. Capriotti AL, Caracciolo G, Cavaliere C, Foglia P, Pozzi D, Samperi R, Laganà A (2012) Do plasma proteins distinguish between liposomes of varying charge density? J Proteomics 75:1924–1932

    CAS  Google Scholar 

  70. Hirsch V, Kinnear C, Moniatte M, Rothen-Rutishauser B, Clift MJ, Fink A (2013) Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro. Nanoscale 5:3723–3732

    CAS  Google Scholar 

  71. Zhang Y, Chen Y, Westerhoff P, Hristovski K, Crittenden JC (2008) Stability of commercial metal oxide nanoparticles in water. Water Res 42:2204–2212

    CAS  Google Scholar 

  72. Kah JC, Chen J, Zubieta A, Hamad-Schifferli K (2012) Exploiting the protein corona around gold nanorods for loading and triggered release. ACS Nano 6:6730–6740

    CAS  Google Scholar 

  73. Pozzi D, Colapicchioni V, Caracciolo G, Piovesana S, Capriotti AL, Palchetti S, De Grossi S, Riccioli A, Amenitsch H, Laganà A (2014) Effect of polyethyleneglycol (PEG) chain length on the bio–nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale 6:2782–2792

    CAS  Google Scholar 

  74. Heinz Amenitsch H, Caracciolo G, Fuscoletti V, Giansanti P, Marianecci C, Pozzi D, Laganà A (2011) Existence of hybrid structures in cationic liposome/DNA complexes revealed by their interaction with plasma proteins. Colloids Surf B Biointerfaces 82:141–146

    Google Scholar 

  75. Capriotti AL, Caracciolo G, Caruso G, Foglia P, Pozzi D, Samperi R, Laganà A (2011) Dna affects the composition of lipoplex protein corona: a proteomic approach. Proteomics 11:3349–3358

    CAS  Google Scholar 

  76. Caracciolo G, Pozzi D, Capriotti AL, Marianecci C, Carafa M, Marchini C, Montani M, Amici A, Amenitsch H, Digman MA, Gratton E, Sanchez SS (2011) Factors determinino the superior performance of lipid/DNA/protemmine nanoparticles over lipoplexes. J Med Chem 54:4160–4171

    CAS  Google Scholar 

  77. Capriotti AL, Caracciolo G, Caruso G, Foglia P, Pozzi D, Samperi R, Laganà A (2011) Differential analysis of “protein corona” profile adsorbed onto different non-viral gene delivery systems. Anal Biochem 419:180–189

    CAS  Google Scholar 

  78. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA (2011) Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525–2534

    CAS  Google Scholar 

  79. Lundqvist M, Stigler J, Cedervall T, Berggard T, Flanagan MB, Lynch I, Elia G, Dawson KA (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5:7503–7509

    CAS  Google Scholar 

  80. Caracciolo G, Pozzi D, Capriotti AL, Cavaliere C, Foglia P, Amenitsch H, Laganà A (2011) Evolution of the protein corona of lipid gene vectors as a function of plasma concentration. Langmuir 27:15048–15053

    CAS  Google Scholar 

  81. Barrán-Berdón AL, Pozzi D, Caracciolo G, Capriotti AL, Caruso G, Cavaliere C, Riccioli A, Palchetti S, Laganà A (2013) Time evolution of nanoparticle-protein corona in human plasma: relevance for targeted drug delivery. Langmuir 29:6485–6494

    Google Scholar 

  82. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Rouven H, Schlenk H, Fisher D, Kiouptsi K, Reinhardt C, Landfester K, Schild H, Maskos M, Knauer S, Stauber RH (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8:772–781

    CAS  Google Scholar 

  83. Ashby J, Schachermeyer S, Pan S, Zhong W (2013) Dissociation-based screening of nanoparticle-protein interaction via flow field-flow fractionation. Anal Chem 85:7494–7501

    CAS  Google Scholar 

  84. Shannahan JH, Lai X, Ke PC, Podila R, Brown JM, Witzmann F (2013) Silver nanoparticle protein corona composition in cell culture media. PLoS One 8:e74001

    CAS  Google Scholar 

  85. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    CAS  Google Scholar 

  86. Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5:1408–1413

    CAS  Google Scholar 

  87. Kettiger H, Schipanski A, Wick P, Huwyler J (2013) Engineered nanomaterial uptake and tissue distribution: from cell to organism. Int J Nanomed 8:3255–3269

    Google Scholar 

  88. Capriotti AL, Caracciolo G, Caruso G, Cavaliere C, Pozzi D, Samperi R, Laganà A (2010) Analysis of plasma protein adsorption onto DC-Chol-DOPE cationic liposomes by HPLC-CHIP coupled to a Q-TOF mass spectrometer. Anal Bioanal Chem 398:2895–2903

    CAS  Google Scholar 

  89. Pannerec-Varna M, Ratajczak P, Bousquet G, Ferreira I, Leboeuf C, Boisgard R, Gapihan G, Jérôme Verine J, Palpant B, Bossy E, Doris E, Poupon J, Fort E, Janin A (2013) In vivo uptake and cellular distribution of gold nanoshells in a preclinical model of xenografted human renal cancer. Gold Bull 46:257–265

    CAS  Google Scholar 

  90. Liu X, Huang N, Li H, Jin Q, Ji J (2013) Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Langmuir 29:9138–9148

    CAS  Google Scholar 

  91. Zhen X, Wang X, Xie C, Wu W, Jiang X (2013) Cellular uptake, antitumor response and tumor penetration of cisplatin-loaded milk protein nanoparticles. Biomaterials 34:1372–1382

    CAS  Google Scholar 

  92. Coradeghini R, Gioria S, García CP, Nativo P, Franchini F, Gilliland D, Ponti J, Rossi F (2013) Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217:205–216

    CAS  Google Scholar 

  93. Ojea-Jiménez I, García-Fernández L, Lorenzo J, Puntes VF (2012) Facile preparation of cationic gold nanoparticle-bioconjugates for cell penetration and nuclear targeting. ACS Nano 6:7692–7702

    Google Scholar 

  94. Hong S, Park S, Park J, Yi J (2013) Effect of end group modification of DNA-functionalized gold nanoparticles on cellular uptake in HepG2 cells. Colloids Surf B Biointerfaces 112:415–420

    CAS  Google Scholar 

  95. dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA (2011) Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small 7:3341–3349

    Google Scholar 

  96. Iversen TG, Skotland T, Sandvig K (2011) Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6:176–185

    CAS  Google Scholar 

  97. Caracciolo G (2012) The protein corona effect for targeted drug delivery. Bioinspired Biomim Nanobiomater 2:54–57

    Google Scholar 

  98. Caracciolo G, Cardarelli F, Pozzi D, Salomone F, Maccari G, Bardi G, Capriotti AL, Cavaliere C, Papi M, Laganà A (2013) Selective targeting capability acquired with a protein corona adsorbed on the surface of 1,2-dioleoyl-3-trimethylammonium propane/DNA nanoparticles. ACS Appl Mater Interfaces 5:13171–13179

    CAS  Google Scholar 

  99. Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, Alyautdin R (2002) Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 10:317–325

    CAS  Google Scholar 

  100. Kreuter J (2004) Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol 4:484–488

    CAS  Google Scholar 

  101. Fleischer CC, Payne CK (2012) Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes. J Phys Chem B 116:8901–8907

    CAS  Google Scholar 

  102. Dittrich C, Burckhardt CJ, Danuser G (2012) Delivery of membrane impermeable cargo into CHO cells by peptide nanoparticles targeted by a protein corona. Biomaterials 33:2746–2753

    CAS  Google Scholar 

  103. Lai ZW, Yan Y, Caruso F, Nice EC (2012) Emerging techniques in proteomics for probing nano-bio interactions. ACS Nano 6:10438–10448

    CAS  Google Scholar 

  104. Li P, Lai X, Witzmann FA, Blazer-Yost BL (2013) Bioinformatic analysis of differential protein expression in calu-3 cells exposed to carbon nanotubes. Proteomes 1:219–239

    Google Scholar 

  105. Banga A, Witzmann FA, Petrache HI, Blazer-Yost BL (2012) Functional effects of nanoparticle exposure on calu-3 airway epithelial cells. Cell Physiol Biochem 29:197–212

    CAS  Google Scholar 

  106. Blazer-Yost BL, Banga A, Amos A, Chernoff E, Lai X, Li C, Mitra S, Witzmann FA (2011) Effect of carbon nanoparticles on renal epithelial cell structure, barrier function, and protein expression. Nanotoxicology 5:354–371

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Laura Capriotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capriotti, A.L., Caracciolo, G., Cavaliere, C. et al. Analytical Methods for Characterizing the Nanoparticle–Protein Corona. Chromatographia 77, 755–769 (2014). https://doi.org/10.1007/s10337-014-2677-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2677-x

Keywords

Navigation