Skip to main content

Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona

  • Chapter
  • First Online:
Cellular and Molecular Toxicology of Nanoparticles

Abstract

The physico-chemical properties of nanoparticles, as characterized under idealized laboratory conditions, have been suggested to differ significantly when studied under complex physiological environments. A major reason for this variation has been the adsorption of biomolecules (mainly proteins) on the nanoparticle surface, constituting the so-called “biomolecular corona”. The formation of biomolecular corona on the nanoparticle surface has been reported to influence various nanoparticle properties viz. cellular targeting, cellular interaction, in vivo clearance, toxicity, etc. Understanding the interaction of nanoparticles with proteins upon administration in vivo thus becomes important for the development of effective nanotechnology-based platforms for biomedical applications. In this chapter, we describe the formation of protein corona on nanoparticles and the differences arising in its composition due to variations in nanoparticle properties. Also discussed is the influence of protein corona on various nanoparticle activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walczyk D, Bombelli FB, Monopoli MP et al (2010) What the cell “sees” in bionanoscience. JACS 132:5761–5768

    Article  CAS  Google Scholar 

  2. Monopoli MP, Åberg C, Salvati A et al (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786

    Article  CAS  PubMed  Google Scholar 

  3. Raesch SS, Tenzer S, Storck W et al (2015) Proteomic and lipidomic analysis of nanoparticle corona upon contact with lung surfactant reveals differences in protein, but not lipid composition. ACS Nano 9:11872–11885

    Article  CAS  PubMed  Google Scholar 

  4. Kapralov AA, Feng WH, Amoscato AA et al (2012) Adsorption of surfactant lipids by single-walled carbon nanotubes in mouse lung upon pharyngeal aspiration. ACS Nano 6:4147–4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Walkey CD, Chan WC (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799

    Article  CAS  PubMed  Google Scholar 

  6. Vroman L, Adams A, Fischer G et al (1980) Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 55:156–159

    CAS  PubMed  Google Scholar 

  7. Aggarwal P, Hall JB, McLeland CB et al (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vroman L (1962) Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 196:476–477

    Article  CAS  PubMed  Google Scholar 

  9. Tenzer S, Docter D, Kuharev J et al (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8:772–781

    Article  CAS  PubMed  Google Scholar 

  10. Gunawan C, Lim M, Marquis CP et al (2014) Nanoparticle–protein corona complexes govern the biological fates and functions of nanoparticles. J Mater Chem B 2:2060–2083

    Article  CAS  Google Scholar 

  11. Maiolo D, Bergese P, Mahon E et al (2014) Surfactant titration of nanoparticle–protein corona. Anal Chem 86:12055–12063

    Article  CAS  PubMed  Google Scholar 

  12. Norde W (1994) Protein adsorption at solid surfaces: a thermodynamic approach. Pure Appl Chem 66:491–496

    Article  CAS  Google Scholar 

  13. Saptarshi SR, Duschl A, Lopata AL (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 11:26

    Article  CAS  Google Scholar 

  14. Cedervall T, Lynch I, Lindman S et al (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A 104:2050–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3:40–47

    Article  CAS  Google Scholar 

  16. Chakraborty S, Joshi P, Shanker V et al (2011) Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin. Langmuir 27:7722–7731

    Article  CAS  PubMed  Google Scholar 

  17. Simberg D, Park J-H, Karmali PP et al (2009) Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30:3926–3933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andersson J, Ekdahl KN, Larsson R et al (2002) C3 adsorbed to a polymer surface can form an initiating alternative pathway convertase. J Immunol 168:5786–5791

    Article  CAS  PubMed  Google Scholar 

  19. Gagner JE, Lopez MD, Dordick JS et al (2011) Effect of gold nanoparticle morphology on adsorbed protein structure and function. Biomaterials 32:7241–7252

    Article  CAS  PubMed  Google Scholar 

  20. Lundqvist M, Stigler J, Elia G et al (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105:14265–14270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tenzer S, Docter D, Rosfa S et al (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5:7155–7167

    Article  CAS  PubMed  Google Scholar 

  22. Cedervall T, Lynch I, Foy M et al (2007) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed 46:5754–5756

    Article  CAS  Google Scholar 

  23. Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  CAS  PubMed  Google Scholar 

  24. Dobrovolskaia MA, Patri AK, Zheng J et al (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomed Nanotechnol Biol Med 5:106–117

    Article  CAS  Google Scholar 

  25. Deng ZJ, Mortimer G, Schiller T et al (2009) Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20:455101

    Article  PubMed  Google Scholar 

  26. Lacerda SHDP, Park JJ, Meuse C et al (2009) Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4:365–379

    Article  Google Scholar 

  27. Gessner A, Lieske A, Paulke BR et al (2003) Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J Biomed Mater Res A 65:319–326

    Article  PubMed  Google Scholar 

  28. Treuel L, Brandholt S, Maffre P et al (2014) Impact of protein modification on the protein corona on nanoparticles and nanoparticle–cell interactions. ACS Nano 8:503–513

    Article  CAS  PubMed  Google Scholar 

  29. Maffre P, Nienhaus K, Amin F et al (2011) Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy. Beilstein J Nanotechnol 2:374–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gessner A, Lieske A, Paulke BR et al (2002) Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 54:165–170

    Article  CAS  PubMed  Google Scholar 

  31. Roser M, Fischer D, Kissel T (1998) Surface-modified biodegradable albumin nano-and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 46:255–263

    Article  CAS  PubMed  Google Scholar 

  32. Lück M, Paulke BR, Schröder W et al (1998) Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J Biomed Mater Res A 39:478–485

    Article  Google Scholar 

  33. Gessner A, Waicz R, Lieske A et al (2000) Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int J Pharm 196:245–249

    Article  CAS  PubMed  Google Scholar 

  34. Müller RH, Wallis KH, Troester SD et al (1992) In vitro characterization of poly (methyl-methaerylate) nanoparticles and correlation to their in vivo fate. J Control Release 20:237–246

    Article  Google Scholar 

  35. Monopoli MP, Walczyk D, Campbell A et al (2011) Physical− chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. JACS 133:2525–2534

    Article  CAS  Google Scholar 

  36. Maiorano G, Sabella S, Sorce B et al (2010) Effects of cell culture media on the dynamic formation of protein− nanoparticle complexes and influence on the cellular response. ACS Nano 4:7481–7491

    Article  CAS  PubMed  Google Scholar 

  37. Dell'Orco D, Lundqvist M, Oslakovic C et al (2010) Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS One 5:e10949

    Article  PubMed  PubMed Central  Google Scholar 

  38. Green R, Davies M, Roberts C et al (1999) Competitive protein adsorption as observed by surface plasmon resonance. Biomaterials 20:385–391

    Article  CAS  PubMed  Google Scholar 

  39. Nagayama S, Ogawara K, Fukuoka Y et al (2007) Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 342:215–221

    Article  CAS  PubMed  Google Scholar 

  40. Casals E, Pfaller T, Duschl A et al (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4:3623–3632

    Article  CAS  PubMed  Google Scholar 

  41. Mahmoudi M, Abdelmonem AM, Behzadi S et al (2013) Temperature: the “ignored” factor at the nanobio interface. ACS Nano 7:6555–6562

    Article  CAS  PubMed  Google Scholar 

  42. Mahmoudi M, Lohse SE, Murphy CJ et al (2013) Variation of protein corona composition of gold nanoparticles following plasmonic heating. Nano Lett 14:6–12

    Article  PubMed  Google Scholar 

  43. Lesniak A, Campbell A, Monopoli MP et al (2010) Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials 31:9511–9518

    Article  CAS  PubMed  Google Scholar 

  44. Shannahan JH, Fritz KS, Raghavendra AJ et al (2016) From the cover: disease-induced disparities in formation of the nanoparticle-biocorona and the toxicological consequences. Toxicol Sci 152:406–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aoyama M, Hata K, Higashisaka K et al (2016) Clusterin in the protein corona plays a key role in the stealth effect of nanoparticles against phagocytes. Biochem Biophys Res Commun 480:690–695

    Article  CAS  PubMed  Google Scholar 

  46. Albanese A, Walkey CD, Olsen JB et al (2014) Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. ACS Nano 8:5515–5526

    Article  CAS  PubMed  Google Scholar 

  47. Dai Q, Guo J, Yan Y et al (2017) Cell-conditioned protein coronas on engineered particles influence immune responses. Biomacromolecules 18:431–439

    Article  CAS  PubMed  Google Scholar 

  48. Ghavami M, Saffar S, Emamy BA et al (2013) Plasma concentration gradient influences the protein corona decoration on nanoparticles. RSC Adv 3:1119–1126

    Article  CAS  Google Scholar 

  49. Röcker C, Pötzl M, Zhang F et al (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4:577–580

    Article  PubMed  Google Scholar 

  50. Rahimi M, Ng E, Bakhtiari K et al (2014) Zeolite nanoparticles for selective sorption of plasma proteins. Sci Rep 5:17259–17259

    Article  Google Scholar 

  51. Corbo C, Molinaro R, Parodi A et al (2016) The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 11:81–100

    Article  CAS  PubMed  Google Scholar 

  52. Miclăuş T, Beer C, Chevallier J et al (2016) Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro. Nat Commun 7:11770

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lee YK, Choi E-J, Webster TJ et al (2015) Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int J Nanomedicine 10:97–113

    PubMed  Google Scholar 

  54. Salvati A, Pitek AS, Monopoli MP et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8:137–143

    Article  CAS  PubMed  Google Scholar 

  55. Mahmoudi M, Sheibani S, Milani AS et al (2015) Crucial role of the protein corona for the specific targeting of nanoparticles. Nanomedicine 10:215–226

    Article  CAS  PubMed  Google Scholar 

  56. Tabata Y, Ikada Y (1990) Phagocytosis of polymer microspheres by macrophages. In: New polymer materials, advances in polymer science, vol 94. Springer, Berlin, pp 107–141

    Google Scholar 

  57. Saha K, Rahimi M, Yazdani M et al (2016) Regulation of macrophage recognition through the interplay of nanoparticle surface functionality and protein corona. ACS Nano 10:4421–4430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lesniak A, Fenaroli F, Monopoli MP et al (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6:5845–5857

    Article  CAS  PubMed  Google Scholar 

  59. Schöttler S, Becker G, Winzen S et al (2016) Protein adsorption is required for stealth effect of poly (ethylene glycol)-and poly (phosphoester)-coated nanocarriers. Nat Nanotechnol 11:372–377

    Article  PubMed  Google Scholar 

  60. Walkey CD, Olsen JB, Guo H et al (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. JACS 134:2139–2147

    Article  CAS  Google Scholar 

  61. Caracciolo G, Palchetti S, Colapicchioni V et al (2015) Stealth effect of biomolecular corona on nanoparticle uptake by immune cells. Langmuir 31:10764–10773

    Article  CAS  PubMed  Google Scholar 

  62. Behzadi S, Serpooshan V, Sakhtianchi R et al (2014) Protein corona change the drug release profile of nanocarriers: the “overlooked” factor at the nanobio interface. Colloids Surf B Biointerfaces 123:143–149

    Article  CAS  PubMed  Google Scholar 

  63. Landgraf L, Christner C, Storck W et al (2015) A plasma protein corona enhances the biocompatibility of Au@ Fe3O4 Janus particles. Biomaterials 68:77–88

    Article  CAS  PubMed  Google Scholar 

  64. Hu W, Peng C, Lv M et al (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5:3693–3700

    Article  CAS  PubMed  Google Scholar 

  65. Chong Y, Ge C, Yang Z et al (2015) Reduced cytotoxicity of graphene nanosheets mediated by blood-protein coating. ACS Nano 9:5713–5724

    Article  CAS  PubMed  Google Scholar 

  66. Laurent S, Ng E-P, Thirifays C et al (2013) Corona protein composition and cytotoxicity evaluation of ultra-small zeolites synthesized from template free precursor suspensions. Toxicol Res 2:270–279

    Article  CAS  Google Scholar 

  67. Moyano DF, Goldsmith M, Solfiell DJ et al (2012) Nanoparticle hydrophobicity dictates immune response. JACS 134:3965–3967

    Article  CAS  Google Scholar 

  68. Linse S, Cabaleiro-Lago C, Xue W-F et al (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci U S A 104:8691–8696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nel AE, Mädler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557

    Article  CAS  PubMed  Google Scholar 

  70. Smith JR, Cicerone MT, Meuse CW (2009) Tertiary structure changes in albumin upon surface adsorption observed via fourier transform infrared spectroscopy. Langmuir 25:4571–4578

    Article  CAS  PubMed  Google Scholar 

  71. Tsai DH, DelRio FW, Keene AM et al (2011) Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir 27:2464–2477

    Article  CAS  PubMed  Google Scholar 

  72. Buijs J, Vera CC, Ayala E et al (1999) Conformational stability of adsorbed insulin studied with mass spectrometry and hydrogen exchange. Anal Chem 71:3219–3225

    Article  CAS  PubMed  Google Scholar 

  73. Buijs J, Norde W, Lichtenbelt JWT (1996) Changes in the secondary structure of adsorbed IgG and F (ab ‘) 2 studied by FTIR spectroscopy. Langmuir 12:1605–1613

    Article  CAS  Google Scholar 

  74. Buijs J, James WT, Norde W et al (1995) Adsorption of monoclonal IgGs and their F (ab′) 2 fragments onto polymeric surfaces. Colloids Surf B Biointerfaces 5:11–23

    Article  CAS  Google Scholar 

  75. Roach P, Farrar D, Perry CC (2005) Interpretation of protein adsorption: surface-induced conformational changes. JACS 127:8168–8173

    Article  CAS  Google Scholar 

  76. Aubin-Tam ME, Hamad-Schifferli K (2005) Gold nanoparticle− cytochrome C complexes: the effect of nanoparticle ligand charge on protein structure. Langmuir 21:12080–12084

    Article  CAS  PubMed  Google Scholar 

  77. Norde W, Giacomelli CE (2000) BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states. J Biotechnol 79:259–268

    Article  CAS  PubMed  Google Scholar 

  78. Mahmoudi M, Shokrgozar MA, Sardari S et al (2011) Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale 3:1127–1138

    Article  CAS  PubMed  Google Scholar 

  79. Kondo A, Murakami F, Higashitani K (1992) Circular dichroism studies on conformational changes in protein molecules upon adsorption on ultrafine polystyrene particles. Biotechnol Bioeng 40:889–894

    Article  CAS  PubMed  Google Scholar 

  80. Hong R, Fischer NO, Verma A et al (2004) Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. JACS 126:739–743

    Article  CAS  Google Scholar 

  81. Zhang D, Neumann O, Wang H et al (2009) Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett 9:666–671

    Article  CAS  PubMed  Google Scholar 

  82. Prime KL, Whitesides GM (1991) Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 252:1164

    Article  CAS  PubMed  Google Scholar 

  83. Cao Z, Jiang S (2012) Super-hydrophilic zwitterionic poly (carboxybetaine) and amphiphilic non-ionic poly (ethylene glycol) for stealth nanoparticles. Nano Today 7:404–413

    Article  CAS  Google Scholar 

  84. Yang W, Zhang L, Wang S et al (2009) Functionalizable and ultra stable nanoparticles coated with zwitterionic poly (carboxybetaine) in undiluted blood serum. Biomaterials 30:5617–5621

    Article  CAS  PubMed  Google Scholar 

  85. Rosen JE, Gu FX (2011) Surface functionalization of silica nanoparticles with cysteine: a low-fouling zwitterionic surface. Langmuir 27:10507–10513

    Article  CAS  PubMed  Google Scholar 

  86. Murthy AK, Stover RJ, Hardin WG et al (2013) Charged gold nanoparticles with essentially zero serum protein adsorption in undiluted fetal bovine serum. JACS 135:7799–7802

    Article  CAS  Google Scholar 

  87. Moyano DF, Saha K, Prakash G et al (2014) Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano 8:6748–6755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SMA acknowledges Council for Scientific and Industrial Research (CSIR) for the research associate fellowship. CMR acknowledges the Department of Science and Technology, India for Sir J.C. Bose Fellowship. MFA acknowledges Dr. Chris Dealwis and NIH for supporting Postdoctoral/Senior Research associate fellowship. Also, we would like to thank Uzma Nisar for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saad Mohammad Ahsan or Md. Faiz Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahsan, S.M., Rao, C.M., Ahmad, M.F. (2018). Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona. In: Saquib, Q., Faisal, M., Al-Khedhairy, A., Alatar, A. (eds) Cellular and Molecular Toxicology of Nanoparticles. Advances in Experimental Medicine and Biology, vol 1048. Springer, Cham. https://doi.org/10.1007/978-3-319-72041-8_11

Download citation

Publish with us

Policies and ethics