Skip to main content
Log in

The effects of genetic relatedness on mate choice and territorial intrusions in a monogamous raptor

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Kin recognition has been shown in some bird species, suggesting that birds might be able to actively avoid inbreeding through mate choice. However, the evidence for such behaviour in wild bird populations is scarce. Intrusions performed by conspecifics could be part of the breeding strategy of a territorial bird species: an intruder might find the opportunity to replace a resident individual and acquire its territory. If intruders seek the opportunity to breed, their relatedness to the opposite-sex resident could influence their nest site intrusions similarly to mate choice. Observations of intrusions also revealed that vagrant juveniles of long-lived raptors repeatedly visit their natal population before maturation. The present study focused on the White-tailed Eagle (Haliaeetus albicilla): a territorial, long-lived, monogamous raptor species. We investigated whether (1) relatedness is considered in mate choice in this species, based on noninvasively collected DNA samples. (2) We furthermore addressed whether nest site intrusions could be explained by any of the following three nonexclusive hypotheses: (i) finding a mate, (ii) acquiring a good-quality territory, or (iii) visiting the natal area. Our results suggest that White-tailed Eagles avoid kin in mate choice. Although a considerable proportion of the intruders were juveniles, none of them was likely to be offspring of resident pairs of the study population. We found a nonsignificant trend towards lower relatedness than expected from random intrusions in both sexes. The revealed intrusion events suggest a sex bias: males seem to prefer better-quality territories more than females do.

Zusammenfassung

Effekte der genetischen Verwandtschaft auf die Partnerwahl und auf territoriales Eindringen bei einem monogamen Greifvogel

Verwandtenerkennung ist bei einigen Vogelarten nachgewiesen, was darauf hindeutet, dass Vögel fähig, sind Inzucht durch Partnerwahl aktiv zu verhindern. Dennoch verfügen wir nur über vereinzelte Beweise für solch ein Verhalten in wildlebenden Populationen. Eindringen auf das Territorium von Artengenossen kann als Teil der Paarungsstrategie von territorialen Vögeln funktionieren: der Eindringling kann dadurch das ansässige Tier ersetzen und sein Territorium übernehmen. Falls Eindringlinge Paarungsgelegenheiten suchen, kann ihre Verwandtschaft mit den Residenten des anderen Geschlechts die Eindringungen am Neststandort ähnlich wie bei der Partnerwahl beeinflussen. Beobachtungen haben auch gezeigt, dass umherstreifende Jungtiere langlebiger Greifvögel vor der Geschlechtsreife ihre Geburtspopulation wiederholt aufsuchen. Wir gingen dieser Frage am Seeadler (Haliaeetus albicilla) nach, einer territorialen, langlebigen, monogamen Greifvogelart. Erstens untersuchten wir mittels nichtinvasiv-gesammelten DNS Proben, ob Verwandtschaft in der Partnerwahl bei dieser Art berücksichtigt wird. Zusätzlich haben geprüft, ob Eindringungen am Neststandort erklärt werden können durch (i) Partnersuche, (ii) Erlangung eines Territoriums von guter Qualität, oder (iii) Aufsuchen der Geburtsgebietes. Unsere Ergebnisse weisen darauf hin, dass Seeadler ihre nahen Verwandten während der Partnerwahl vermeiden. Obwohl eine beträchtlicher Anteil der Eindringlinge Jungtiere waren, waren diese wahrscheinlich nicht der Nachwuchs der residenten Paare. Wir fanden eine nicht signifikante Tendenz zu niedrigerer Verwandtschaft als bei zufälligen Eindringungen der beiden Geschlechter zu erwarten wäre. Die aufgedeckten Eindringungsereignisse deuten auf einen Unterschied zwischen den Geschlechtern hin: Männchen schienen Territorien von besserer Qualität mehr zu bevorzugen als Weibchen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • BirdLife International 2015. Haliaeetus albicilla. The IUCN Red List of Threatened Species 2015: Haliaeetus albicilla. http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T22695137A80155303.en. Downloaded on 11 September 2016

  • Bonadonna F, Sanz-Aguilar A (2012) Kin recognition and inbreeding avoidance in wild birds: the first evidence for individual kin-related odour recognition. Anim Behav 84:509–513. doi:10.1016/j.anbehav.2012.06.014

    Article  Google Scholar 

  • Busch JD, Katzner TE, Bragin E, Keim P (2005) Tetranucleotide microsatellites for aquila and haliaeetus eagles. Mol Ecol Notes 5:39–41. doi:10.1111/j.1471-8286.2004.00823.x

    Article  CAS  Google Scholar 

  • Cieślak M, Dul B (2006) Feathers: identification for bird conservation. Natura, Warsaw

  • Ferrer M (1993) Juvenile dispersal behaviour and natal philopatry of a long-lived raptor, the Spanish Imperial Eagle Aquila adalberti. Ibis (Lond 1859) 135:132–138. doi:10.1111/j.1474-919X.1993.tb02824.x

    Article  Google Scholar 

  • Ferrer M, Morandini V, Newton I (2015) Floater interference reflects territory quality in the Spanish Imperial Eagle Aquila adalberti: a test of a density-dependent mechanism. Ibis (Lond 1859) 157:849–859. doi:10.1111/ibi.12289

    Article  Google Scholar 

  • Foerster K, Valcu M, Johnsen A, Kempenaers B (2006) A spatial genetic structure and effects of relatedness on mate choice in a wild bird population. Mol Ecol 15:4555–4567. doi:10.1111/j.1365-294X.2006.03091.x

    Article  CAS  PubMed  Google Scholar 

  • Forsman D (1999) The raptors of Europe and the Middle East: a handbook of field identification. T & AD Poyser, London

    Google Scholar 

  • Garcia JT, Arroyo BE (2002) Intra- and interspecific agonistic behaviour in sympatric harriers during the breeding season. Anim Behav 64:77–84. doi:10.1006/anbe.2002.3035

    Article  Google Scholar 

  • Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162. doi:10.1016/S0003-3472(80)80103-5

    Article  Google Scholar 

  • Hailer F, Gautschi B, Helander B (2005) Development and multiplex PCR amplification of novel microsatellite markers in the white-tailed sea eagle, Haliaeetus albicilla (Aves: falconiformes, Accipitridae). Mol Ecol Notes 5:938–940. doi:10.1111/j.1471-8286.2005.01122.x

    Article  CAS  Google Scholar 

  • Hardy OJ, Vekemans X (2002) Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi:10.1046/j.1471-8286.2002.00305.x

    Article  Google Scholar 

  • Helander B (2003) The international colour-ringing programme—adult survival, homing, and the expansion of the white-tailed sea eagle in Sweden. In: Helander B, Marquis M, Bowerman B (eds) Sea eagle 2000. Swedish Society for Nature Conservation (SNF), Stockholm, pp 145–154

  • Helander B, Stjernberg T (2003) Action plan for the conservation of white-tailed sea eagle (Haliaeetus albicilla). BirdLife International Sweden, Strasbourg

    Google Scholar 

  • Hernández-Matías A, Real J, Pradel R et al (2010) Determinants of territorial recruitment in Bonelli’s eagle (Aquila fasciata) populations. Auk 127:173–184. doi:10.1525/auk.2009.09143

    Article  Google Scholar 

  • Horváth Z (2009) White-tailed eagle (Haliaeetus albicilla) populations in Hungary between 1987–2007. Denisia 27:85–95

    Google Scholar 

  • Horváth MB, Martínez-Cruz B, Negro JJ et al (2005) An overlooked DNA source for non-invasive genetic analysis in birds. J Avian Biol 36:84–88. doi:10.1111/j.0908-8857.2005.03370.x

    Article  Google Scholar 

  • Kalinowski ST, Wagner AP, Taper ML (2006) ML-relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579. doi:10.1111/j.1471-8286.2006.01256.x

    Article  CAS  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program Cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. doi:10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  Google Scholar 

  • Kawano KM, Yamaguchi N, Kasuya E, Yahara T (2009) Extra-pair mate choice in the female great tit Parus major: good males or compatible males. J Ethol 27:349–359. doi:10.1007/s10164-008-0126-8

    Article  Google Scholar 

  • Krone O, Nadjafzadeh M, Berger A (2013) White-tailed sea eagles (Haliaeetus albicilla) defend small home ranges in north-east Germany throughout the year. J Ornithol 154:827–835. doi:10.1007/s10336-013-0951-6

    Article  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Cruz B, David VA, Godoy JA et al (2002) Eighteen polymorphic microsatellite markers for the highly endangered Spanish imperial eagle (Aquila adalberti) and related species. Mol Ecol Notes 2:323–326. doi:10.1046/j.1471-8278.2002.00231.x

    Article  Google Scholar 

  • Meyburg B-U, Meyburg C, Franck-Neumann F (2007) Why do female lesser spotted eagles (Aquila pomarina) visit strange nests remote from their own? J Ornithol 148:157–166. doi:10.1007/s10336-006-0113-1

    Article  Google Scholar 

  • Milligan BG (2003) Maximum-likelihood estimation of relatedness. Genetics 163:1153–1167

    PubMed  PubMed Central  Google Scholar 

  • Mougeot F (2004) Breeding density, cuckoldry risk and copulation behaviour during the fertile period in raptors: a comparative analysis. Anim Behav 67:1067–1076. doi:10.1016/j.anbehav.2003.10.011

    Article  Google Scholar 

  • Mougeot F, Arroyo BE, Bretagnolle V (2006) Paternity assurance responses to first-year and adult male territorial intrusions in a courtship-feeding raptor. Anim Behav 71:101–108. doi:10.1016/j.anbehav.2005.03.036

    Article  Google Scholar 

  • Nemesházi E, Kövér S, Zachos FE et al (2016) Natural and anthropogenic influences on the population structure of white-tailed eagles in the Carpathian Basin and central Europe. J Avian Biol 47:795–805. doi:10.1111/jav.00938

    Article  Google Scholar 

  • Nygård T, Kenward RE, Einvik K (2003) Dispersal in juvenile white-tailed sea eagles in Norway shown by radio-telemetry. In: Helander B, Marquis M, Bowerman B (eds) Sea Eagle 2000. Swedish Society for Nature Conservation (SNF), Stockholm, pp 191–196

  • Oh KP, Badyaev AV (2006) Adaptive genetic complementarity in mate choice coexists with selection for elaborate sexual traits. Proc Biol Sci 273:1913–1919. doi:10.1098/rspb.2006.3528

    Article  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537-2359. doi:10.1093/bioinformatics/bts460

    Article  Google Scholar 

  • Penteriani V, Ferrer M, Delgado MM (2011) Floater strategies and dynamics in birds, and their importance in conservation biology: towards an understanding of nonbreeders in avian populations. Anim Conserv 14:233–241. doi:10.1111/j.1469-1795.2010.00433.x

    Article  Google Scholar 

  • Phipson B, Smyth GK (2010) Permutation p-values should never be zero: calculating exact p-values when permutations are randomly drawn. Stat Appl Genet Mol Biol 9:39. doi:10.2202/1544-6115.1585

    PubMed  Google Scholar 

  • Pusey A, Wolf M (1996) Inbreeding avoidance in animals. Trends Ecol Evol 11:201–206. doi:10.1016/0169-5347(96)10028-8

    Article  CAS  PubMed  Google Scholar 

  • Radović A, Mikuska T (2009) Population size, distribution and habitat selection of the white-tailed eagle Haliaeetus albicilla in the alluvial wetlands of Croatia. Biologia (Bratisl) 64:156–164. doi:10.2478/s11756-008-0011-0

    Google Scholar 

  • Rudnick JA, Katzner TE, Bragin EA et al (2005) Using naturally shed feathers for individual identification, genetic parentage analyses, and population monitoring in an endangered Eastern imperial eagle (Aquila heliaca) population from Kazakhstan. Mol Ecol 14:2959–2967. doi:10.1111/j.1365-294X.2005.02641.x

    Article  CAS  PubMed  Google Scholar 

  • Rudnick JA, Katzner TE, DeWoody JA (2009) Genetic analyses of noninvasively collected feathers can provide new insights into avian demography and behavior. In: Aronoff JB (ed) Handbook of nature conservation. Nova Science, Hauppauge, pp 181–197

  • Rutz C (2005) Extra-pair copulation and intraspecific nest intrusions in the northern goshawk Accipiter gentilis. Ibis (Lond 1859) 147:831–835. doi:10.1111/j.1474-919x.2005.00453.x

  • Sardell RJ, Kempenaers B, Duval EH (2014) Female mating preferences and offspring survival: testing hypotheses on the genetic basis of mate choice in a wild lekking bird. Mol Ecol 23:933–946. doi:10.1111/mec.12652

    Article  PubMed  Google Scholar 

  • Sergio F, Newton I (2003) Occupancy as a measure of territory quality. J Anim Ecol 72:857–865. doi:10.1046/j.1365-2656.2003.00758.x

    Article  Google Scholar 

  • Sharp SP, McGowan A, Wood MJ, Hatchwell BJ (2005) Learned kin recognition cues in a social bird. Nature 434:1127–1130. doi:10.1038/nature03522

    Article  CAS  PubMed  Google Scholar 

  • Struwe-Juhl B, Grünkorn T (2007) Ergebnisse der Farbberingung von Seeadlern Haliaeetus albicilla in Schleswig-Holstein mit Angaben zu Ortstreue, Umsiedlung, Dispersion, Geschlechtssreife, Altersstruktur und Geschwisterverpaarung. Vogelwelt 128:117–129

    Google Scholar 

  • Turrin C, Watts BD (2014) Intraspecific intrusion at bald eagle nests. Ardea 102:71–78. doi:10.5253/078.102.0106

    Article  Google Scholar 

  • Van De Casteele T, Galbusera P, Matthysen E (2001) A comparison of microsatellite-based pairwise relatedness estimators. Mol Ecol 10:1539–1549. doi:10.1046/j.1365-294X.2001.01288.x

    Article  PubMed  Google Scholar 

  • van de Pol M, Pen I, Heg D, Weissing FJ (2007) Variation in habitat choice and delayed reproduction: adaptive queuing strategies or individual quality differences? Am Nat 170:530–541. doi:10.1086/521237

    Article  PubMed  Google Scholar 

  • Vili N, Nemesházi E, Kovács S et al (2013) Factors affecting DNA quality in feathers used for non-invasive sampling. J Ornithol 154:587–595. doi:10.1007/s10336-013-0932-9

    Article  Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256. doi:10.1046/j.1365-294X.2001.01185.x

    Article  CAS  PubMed  Google Scholar 

  • Wheelwright NT, Mauck RA (1998) Philopatry, natal dispersal, and inbreeding avoidance in an island population of savannah sparrows. Ecology 79:755–767. doi:10.1890/0012-9658(1998)079[0755:pndaia]2.0.co;2

  • Whitfield DP, Douse A, Evans RJ et al (2009a) Natal and breeding dispersal in a reintroduced population of White-tailed eagles Haliaeetus albicilla. Bird Study 56:177–186. doi:10.1080/00063650902792023

    Article  Google Scholar 

  • Whitfield DP, Duffy K, McLeod DRA et al (2009b) Juvenile dispersal of white-tailed eagles in Western Scotland. J Raptor Res 43:110–120. doi:10.3356/JRR-08-54.1

    Article  Google Scholar 

Download references

Acknowledgements

Tamás Nyemcsok and Andrea Schulcz helped to collect moulted feathers at the Boronka Landscape Protection Area. Some samples from southwestern Hungary were collected by Attila Mórocz and most from eastern Hungary were collected by Gábor Tihanyi. Zsolt Lang and Szilvia Pásztory-Kovács helped with insightful ideas for the statistics. Data collection on territory occupancy across Boronka Forest since 1987 was coordinated by Tibor Tömösváry and András Pintér. Veronika Bókony contributed useful comments on the manuscript before submission. The study was funded by the Normative Research Funding Committee of Szent István University. Sample collection was approved by the Hungarian National Inspectorate for Environment, Nature and Water.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edina Nemesházi.

Additional information

Communicated by O. Krüger.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemesházi, E., Szabó, K., Horváth, Z. et al. The effects of genetic relatedness on mate choice and territorial intrusions in a monogamous raptor. J Ornithol 159, 233–244 (2018). https://doi.org/10.1007/s10336-017-1494-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-017-1494-z

Keywords

Navigation