Skip to main content

Advertisement

Log in

Combine contrast-enhanced 3D T2-weighted short inversion time inversion recovery MR neurography with MR angiography at 1.5 T in the assessment of brachial plexopathy

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Purpose

To explore the benefits of using a single injection of contrast agent at a 1.5 T system to perform both contrast-enhanced MR angiography (MRA) and 3D-T2-STIR MR neurography (MRN) to assess of brachial plexopathy.

Methods

In this prospective study, 27 patients with suspected brachial plexopathy, received an imaging procedure composed sequentially of non-enhanced 3D-T2-STIR, CE-MRA, and contrast-enhanced 3D-T2-STIR, using a 1.5 T MR scanner. Signal intensities and contrast ratios were compared with and without contrast agent. The non-enhanced and contrast-enhanced 3D-T2-STIR images were mixed for two experienced radiologists to rate image diagnostic quality in a blind manner. 3D images of MRN and MRA were merged to reveal the spatial relation between brachial plexopathy and concomitant vascular disorders.

Results

By comparing the non-enhanced with contrast-enhanced 3D-T2-STIR images, it revealed that the use of the contrast agent in 3D-T2-STIR MRN could significantly suppress the background signals contributed by small vein (P < 0.001), lymph node (P < 0.001), muscle (P < 0.001) and bone (P < 0.001). This improved the contrast ratios between the brachial plexus and its surrounding tissues (P < 0.001) and boosted the image’s quality score (P < 0.01). Examining both CE-MRA and 3D-T2-STIR images revealed a relatively high incidence of concurrent vascular dysfunction in brachial plexopathy, with 39% of confirmed cases accompanied with subclavian and axillary vessel abnormalities.

Conclusion

Combining contrast-enhanced 3D-T2-STIR MRN with MRA at a 1.5 T system significantly suppresses background signals, improves brachial-plexus display, and provides a direct assessment for both brachial plexus lesion and surrounding vascular injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vargas MI, Viallon M, Nguyen D, Beaulieu JY, Delavelle J, Becker M (2010) New approaches in imaging of the brachial plexus. Eur J Radiol 74:403–410. https://doi.org/10.1016/j.ejrad.2010.01.024

    Article  PubMed  CAS  Google Scholar 

  2. Vargas MI, Gariani J, Delattre BA, Dietemann JL, Lovblad K, Becker M (2015) Three-dimensional MR imaging of the brachial plexus. Semin Musculoskelet Radiol 19:137–148. https://doi.org/10.1055/s-0035-1546300

    Article  PubMed  Google Scholar 

  3. Lutz AM, Gold G, Beaulieu C (2014) MR imaging of the brachial plexus. Neuroimaging Clin N Am 24:91–108. https://doi.org/10.1016/j.nic.2013.03.024

    Article  PubMed  Google Scholar 

  4. Madhuranthakam AJ, Lenkinski RE (2015) Technical advancements in MR neurography. Semin Musculoskelet Radiol 19:86–93. https://doi.org/10.1055/s-0035-1547370

    Article  PubMed  Google Scholar 

  5. Chhabra A, Thawait GK, Soldatos T, Thakkar RS, Del GF, Chalian M et al (2013) High-resolution 3T MR neurography of the brachial plexus and its branches, with emphasis on 3D imaging. AJNR Am J Neuroradiol 34:486–497. https://doi.org/10.3174/ajnr.A3287

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Viallon M, Vargas MI, Jlassi H, Lovblad KO, Delavelle J (2008) High-resolution and functional magnetic resonance imaging of the brachial plexus using an isotropic 3D T2 STIR (Short Term Inversion Recovery) SPACE sequence and diffusion tensor imaging. Eur Radiol 18:1018–1023. https://doi.org/10.1007/s00330-007-0834-4

    Article  PubMed  CAS  Google Scholar 

  7. Upadhyaya V, Upadhyaya DN, Kumar A, Gujral RB (2015) MR neurography in traumatic brachial plexopathy. Eur J Radiol 84:927–932. https://doi.org/10.1016/j.ejrad.2015.02.006

    Article  PubMed  Google Scholar 

  8. Baumer P, Kele H, Kretschmer T, Koenig R, Pedro M, Bendszus M et al (2014) Thoracic outlet syndrome in 3T MR neurography-fibrous bands causing discernible lesions of the lower brachial plexus. Eur Radiol 24:756–761. https://doi.org/10.1007/s00330-013-3060-2

    Article  PubMed  CAS  Google Scholar 

  9. Chhabra A, Carrino J (2015) Current MR neurography techniques and whole-body MR neurography. Semin Musculoskelet Radiol 19:79–85. https://doi.org/10.1055/s-0035-1545074

    Article  PubMed  Google Scholar 

  10. Wang X, Harrison C, Mariappan YK, Gopalakrishnan K, Chhabra A, Lenkinski RE et al (2017) MR neurography of brachial plexus at 3.0 T with robust fat and blood suppression. Radiology 283:538–546. https://doi.org/10.1148/radiol.2016152842

    Article  PubMed  Google Scholar 

  11. Klupp E, Cervantes B, Sollmann N, Treibel F, Weidlich D, Baum T et al (2019) Improved brachial plexus visualization using an adiabatic iMSDE-prepared STIR 3D TSE. Clin Neuroradiol 29:631–638. https://doi.org/10.1007/s00062-018-0706-0

    Article  PubMed  Google Scholar 

  12. Yoneyama M, Takahara T, Kwee TC, Nakamura M, Tabuchi T (2013) Rapid high resolution MR neurography with a diffusion-weighted pre-pulse. Magn Reson Med Sci 12:111–119. https://doi.org/10.2463/mrms.2012-0063

    Article  PubMed  Google Scholar 

  13. Chen WC, Tsai YH, Weng HH, Wang SC, Liu HL, Peng SL et al (2014) Value of enhancement technique in 3D–T2-STIR images of the brachial plexus. J Comput Assist Tomogr 38:335–339. https://doi.org/10.1097/RCT.0000000000000061

    Article  PubMed  Google Scholar 

  14. Wang L, Niu Y, Kong X, Yu Q, Kong X, Lv Y et al (2016) The application of paramagnetic contrast-based T2 effect to 3D heavily T2W high-resolution MR imaging of the brachial plexus and its branches. Eur J Radiol 85:578–584. https://doi.org/10.1016/j.ejrad.2015.12.001

    Article  PubMed  Google Scholar 

  15. Zhang X, Li M, Guan J, Wang H, Li S, Guo Y et al (2017) Evaluation of the sacral nerve plexus in pelvic endometriosis by three-dimensional MR neurography. J Magn Reson Imaging 45:1225–1231. https://doi.org/10.1002/jmri.25435

    Article  PubMed  Google Scholar 

  16. Aralasmak A, Karaali K, Cevikol C, Uysal H, Senol U (2010) MR imaging findings in brachial plexopathy with thoracic outlet syndrome. AJNR Am J Neuroradiol 31:410–417. https://doi.org/10.3174/ajnr.A1700

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Verenna AA, Alexandru D, Karimi A, Brown JM, Bove GM, Daly FJ et al (2016) Dorsal Scapular Artery Variations and Relationship to the Brachial Plexus, and a Related Thoracic Outlet Syndrome Case. J Brachial Plex Peripher Nerve Inj 11:e21–e28. https://doi.org/10.1055/s-0036-1583756

    Article  PubMed  PubMed Central  Google Scholar 

  18. Aralasmak A, Cevikol C, Karaali K, Senol U, Sharifov R, Kilicarslan R et al (2012) MRI findings in thoracic outlet syndrome. Skeletal Radiol 41:1365–1374. https://doi.org/10.1007/s00256-012-1485-3

    Article  PubMed  Google Scholar 

  19. Zarkadas PC, Throckmorton TW, Steinmann SP (2008) Neurovascular injuries in shoulder trauma. Orthop Clin North Am 39:483–490. https://doi.org/10.1016/j.ocl.2008.06.005

    Article  PubMed  Google Scholar 

  20. Araujo JD, Azenha Filho JO, Barros ET, Marconi A (1988) Reciprocal compression between the axillary artery and brachial plexus. J Cardiovasc Surg 29:172

    CAS  Google Scholar 

  21. Johnson SF, Johnson SB, Strodel WE, Barker DE, Kearney PA (1991) Brachial plexus injury: association with subclavian and axillary vascular trauma. J Trauma 31:1546–1550

    Article  CAS  PubMed  Google Scholar 

  22. Rasulic L, Savic A, Lepic M, Puzovic V, Karaleic S, Kovacevic V et al (2018) Epidemiological characteristics of surgically treated civilian traumatic brachial plexus injuries in Serbia. Acta Neurochir (Wien) 160:1837–1845. https://doi.org/10.1007/s00701-018-3640-7

    Article  CAS  Google Scholar 

  23. Kasper JM, Wadhwa V, Scott KM, Rozen S, Xi Y, Chhabra A (2015) SHINKEI–a novel 3D isotropic MR neurography technique: technical advantages over 3DIRTSE-based imaging. Eur Radiol 25:1672–1677. https://doi.org/10.1007/s00330-014-3552-8

    Article  PubMed  Google Scholar 

  24. Hiwatashi A, Togao O, Yamashita K, Kikuchi K, Ogata H, Yamasaki R et al (2017) Evaluation of chronic inflammatory demyelinating polyneuropathy: 3D nerve-sheath signal increased with inked rest-tissue rapid acquisition of relaxation enhancement imaging (3D SHINKEI). Eur Radiol 27:447–453. https://doi.org/10.1007/s00330-016-4406-3

    Article  PubMed  Google Scholar 

  25. Weinmann HJ, Brasch RC, Press WR, Wesbey GE (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR Am J Roentgenol 142:619–624. https://doi.org/10.2214/ajr.142.3.619

    Article  PubMed  CAS  Google Scholar 

  26. Krinsky G, Rofsky NM, Weinreb JC (1996) Nonspecificity of short inversion time inversion recovery (STIR) as a technique of fat suppression: pitfalls in image interpretation. AJR Am J Roentgenol 166:523–526. https://doi.org/10.2214/ajr.166.3.8623620

    Article  PubMed  CAS  Google Scholar 

  27. Kobayashi S, Meir A, Baba H, Uchida K, Hayakawa K (2005) Imaging of intraneural edema by using gadolinium-enhanced MR imaging: experimental compression injury. AJNR Am J Neuroradiol 26:973–980

    PubMed  PubMed Central  Google Scholar 

  28. Hill BJ, Padgett KR, Kalra V, Marcillo A, Bowen B, Pattany P et al (2018) Gadolinium DTPA enhancement characteristics of the rat sciatic nerve after crush injury at 4.7T. AJNR Am J Neuroradiol 39:177–183. https://doi.org/10.3174/ajnr.A5437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Bowen BC, Pattany PM, Saraf-Lavi E, Maravilla KR (2004) The brachial plexus: normal anatomy, pathology, and MR imaging. Neuroimaging Clin N Am 14:59–85. https://doi.org/10.1016/j.nic.2003.12.002

    Article  PubMed  Google Scholar 

  30. Binder DK, Smith JS, Barbaro NM (2004) Primary brachial plexus tumors: imaging, surgical, and pathological findings in 25 patients. Neurosurg Focus 16:E11

    Article  PubMed  Google Scholar 

  31. Qayyum A, MacVicar AD, Padhani AR, Revell P, Husband JE (2000) Symptomatic brachial plexopathy following treatment for breast cancer: utility of MR imaging with surface-coil techniques. Radiology 214:837–842. https://doi.org/10.1148/radiology.214.3.r00mr11837

    Article  PubMed  CAS  Google Scholar 

  32. Chen L, Peng F, Wang T, Chen D, Yang J (2014) Traumatic pseudoaneurysm of axillary artery combined with brachial plexus injury. PLoS ONE 9:e113099. https://doi.org/10.1371/journal.pone.0113099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Charon JP, Milne W, Sheppard DG, Houston JG (2004) Evaluation of MR angiographic technique in the assessment of thoracic outlet syndrome. Clin Radiol 59:588–595. https://doi.org/10.1016/j.crad.2003.11.020

    Article  PubMed  Google Scholar 

  34. Ersoy H, Steigner ML, Coyner KB, Gerhard-Herman MD, Rybicki FJ, Bueno R et al (2012) Vascular thoracic outlet syndrome: protocol design and diagnostic value of contrast-enhanced 3D MR angiography and equilibrium phase imaging on 1.5- and 3-T MRI scanners. AJR Am J Roentgenol 198:1180–1187. https://doi.org/10.2214/AJR.11.6417

Download references

Funding

This study was funded by Shanghai Key Laboratory for Peripheral Nerve and Microsurgery (17DZ2270500) and Zhangjiagang Bureau of Technology (ZKS1729).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ZX, TZ, JC, and ZL. Statistical analysis was performed by ZX, TZ. The first draft of the manuscript was written by ZX and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zongbao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Zhang, T., Chen, J. et al. Combine contrast-enhanced 3D T2-weighted short inversion time inversion recovery MR neurography with MR angiography at 1.5 T in the assessment of brachial plexopathy. Magn Reson Mater Phy 34, 229–239 (2021). https://doi.org/10.1007/s10334-020-00867-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-020-00867-z

Keywords

Navigation