Skip to main content
Log in

Scan time minimization in hepatic diffusion-weighted imaging: evaluation of the simultaneous multislice acceleration technique with different acceleration factors and gradient preparation schemes

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

To evaluate simultaneous multislice (sms) accelerated diffusion-weighted imaging (DWI) of the liver in comparison to conventional sequences.

Materials and methods

Ten volunteers underwent DWI of the liver at 1.5 T. Four different sms-accelerated sequences with monopolar and bipolar gradient preparation (MP, BP) and acceleration factors 2 and 3 (sms2-DWI, sms3-DWI) were compared to conventional DWI (c-DWI). Image quality criteria rated on a 5-point Likert scale (5 = excellent), image quality sum scores (maximum 120), and ADC were compared using Friedman test and Dunn-Bonferroni post hoc test. Bland–Altman plots were calculated for ADC comparison. p values <0.05 were considered significant.

Results

Sms2-DWI offered scan time minimization of 67 % without significant difference in image quality (sum score: sms2-DWI MP/BP: 97 ± 8/92 ± 9; c-DWI MP/BP: 99 ± 8/97 ± 8). Sms3-DWI offered slight additional scan time minimization with significantly inferior image quality (sum score: sms3-DWI MP/BP: 75 ± 14/69 ± 14; p < 0.001). MP preparation provided slightly higher image quality in sms-DWI without statistical significance. ADC in sms-DWI were significantly lower (sms2-DWI MP 1.01 × 10−3 mm2/s; c-DWI MP 1.20 × 10−3 mm2/s; p < 0.001).

Conclusion

Sms2-DWI provides considerable scan time minimization without significant shortcomings in image quality. Sms3-DWI provides significantly inferior image quality without further scan time minimization. Potentially lower ADC in sms-DWI should be considered in clinical routine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bharwani N, Koh DM (2013) Diffusion-weighted imaging of the liver: an update. Cancer Imaging 13:171–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Taouli B, Koh DM (2010) Diffusion-weighted MR imaging of the liver. Radiology 254(1):47–66

    Article  PubMed  Google Scholar 

  3. Wagner M, Doblas S, Daire JL, Paradis V, Haddad N, Leitao H, Garteiser P, Vilgrain V, Sinkus R, Van Beers BE (2012) Diffusion-weighted MR imaging for the regional characterization of liver tumors. Radiology 264(2):464–472

    Article  PubMed  Google Scholar 

  4. Bains LJ, Zweifel M, Thoeny HC (2012) Therapy response with diffusion MRI: an update. Cancer Imaging 12:395–402

    Article  PubMed  PubMed Central  Google Scholar 

  5. Filipe JP, Curvo-Semedo L, Casalta-Lopes J, Marques MC, Caseiro-Alves F (2013) Diffusion-weighted imaging of the liver: usefulness of ADC values in the differential diagnosis of focal lesions and effect of ROI methods on ADC measurements. Magn Reson Mater Phys 26(3):303–312

    Article  CAS  Google Scholar 

  6. Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Gunther M, Glasser MF, Miller KL, Ugurbil K, Yacoub E (2010) Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One 5(12):e15710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lau AZ, Tunnicliffe EM, Frost R, Koopmans PJ, Tyler DJ, Robson MD (2015) Accelerated human cardiac diffusion tensor imaging using simultaneous multislice imaging. Magn Reson Med 73(3):995–1004

    Article  PubMed  Google Scholar 

  8. Obele CC, Glielmi C, Ream J, Doshi A, Campbell N, Zhang HC, Babb J, Bhat H, Chandarana H (2015) Simultaneous multislice accelerated free-breathing diffusion-weighted imaging of the liver at 3T. Abdom Imaging

  9. Lewis S, Kamath A, Chatterji M, Patel A, Shyknevsky I, Dyvorne HA, Kuehn B, Taouli B (2015) Diffusion-weighted imaging of the liver in patients with chronic liver disease: comparison of monopolar and bipolar diffusion gradients for image quality and lesion detection. AJR 204(1):59–68

    Article  PubMed  Google Scholar 

  10. Kyriazi S, Blackledge M, Collins DJ, Desouza NM (2010) Optimising diffusion-weighted imaging in the abdomen and pelvis: comparison of image quality between monopolar and bipolar single-shot spin-echo echo-planar sequences. Eur Radiol 20(10):2422–2431

    Article  PubMed  Google Scholar 

  11. Shimizu H, Isoda H, Fujimoto K, Kawahara S, Furuta A, Shibata T, Togashi K (2013) Comparison of acquired diffusion weighted imaging and computed diffusion weighted imaging for detection of hepatic metastases. Eur J Radiol 82(3):453–458

    Article  PubMed  Google Scholar 

  12. Dyvorne HA, Galea N, Nevers T, Fiel MI, Carpenter D, Wong E, Orton M, de Oliveira A, Feiweier T, Vachon ML, Babb JS, Taouli B (2013) Diffusion-weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters—a pilot study. Radiology 266(3):920–929

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stejskal EOTJ (1965) Spin echoes in the presence of a time dependent gradient field. J Chem Phys 42:288

    Article  CAS  Google Scholar 

  14. Reese TG, Heid O, Weisskoff RM, Wedeen VJ (2003) Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 49(1):177–182

    Article  CAS  PubMed  Google Scholar 

  15. Rosenkrantz AB, Geppert C, Kiritsy M, Feiweier T, Mossa DJ, Chandarana H (2015) Diffusion-weighted imaging of the liver: comparison of image quality between monopolar and bipolar acquisition schemes at 3T. Abdom Imaging 40(2):289–298

    Article  PubMed  Google Scholar 

  16. Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G (2001) Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging 13(2):313–317

    Article  CAS  PubMed  Google Scholar 

  17. Auerbach EJ, Xu J, Yacoub E, Moeller S, Ugurbil K (2013) Multiband accelerated spin-echo echo planar imaging with reduced peak RF power using time-shifted RF pulses. Magn Reson Med 69(5):1261–1267

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, Ugurbil K (2010) Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med 63(5):1144–1153

    Article  PubMed  PubMed Central  Google Scholar 

  19. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

    Article  CAS  PubMed  Google Scholar 

  20. Cauley SF, Polimeni JR, Bhat H, Wald LL, Setsompop K (2014) Interslice leakage artifact reduction technique for simultaneous multislice acquisitions. Magn Reson Med 72(1):93–102

    Article  PubMed  Google Scholar 

  21. Colagrande S, Pasquinelli F, Mazzoni LN, Belli G, Virgili G (2010) MR-diffusion weighted imaging of healthy liver parenchyma: repeatability and reproducibility of apparent diffusion coefficient measurement. J Magn Reson Imaging 31(4):912–920

    Article  PubMed  Google Scholar 

  22. Sasaki M, Yamada K, Watanabe Y, Matsui M, Ida M, Fujiwara S, Shibata E (2008) Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology 249(2):624–630

    Article  PubMed  Google Scholar 

  23. Larsen NE, Haack S, Larsen LP, Pedersen EM (2013) Quantitative liver ADC measurements using diffusion-weighted MRI at 3 Tesla: evaluation of reproducibility and perfusion dependence using different techniques for respiratory compensation. Magn Reson Mater Phys 26(5):431–442

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the University of Minnesota Center for Magnetic Resonance Research for offering continuous support regarding the sms-accelerated sequence. Dr. Christian Wuerslin, Stanford, Radiological Sciences Laboratory, is acknowledged for sharing with us the Matlab post-processing software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Schraml.

Ethics declarations

Funding

This study did not receive funding.

Conflict of interest

The authors declare that they have no conflict of interest regarding data acquisition, data evaluation, data interpretation and preparation of the manuscript for the study.

Ethical approval

All procedures performed in the study were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all participants included in the study.

Appendix

Appendix

See Table 3.

Table 3 Comparison of mean ratings for predefined image quality criteria and sum scores

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taron, J., Martirosian, P., Schwenzer, N.F. et al. Scan time minimization in hepatic diffusion-weighted imaging: evaluation of the simultaneous multislice acceleration technique with different acceleration factors and gradient preparation schemes. Magn Reson Mater Phy 29, 739–749 (2016). https://doi.org/10.1007/s10334-016-0553-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-016-0553-4

Keywords

Navigation