Skip to main content
Log in

Potential of actinomycetes isolated from earthworm castings in controlling root-knot nematode Meloidogyne incognita

  • Disease Control
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Morphological and molecular analyses of 25 actinomycete isolates from five commercial earthworm castings in Thailand indicated that all isolates belonged to the genus Streptomyces. From primary screens of spore suspensions and culture filtrates of the isolates for in vitro effects on egg hatch and juvenile mortality of Meloidogyne incognita, 12 isolates that gave significant control of M. incognita were confirmed to reduce root penetration by M. incognita in a secondary screen using green bean. The 12 isolates were also evaluated for their efficiency against root-knot disease on chili in the greenhouse. Streptomyces sp. KPS-E004 reduced the egg hatch rate the most (by 55.8 % using spores, 62.4 % using culture filtrate) and increased the juvenile mortality rate the most (by 63.9 % with spores, 73.9 % with culture filtrate). In the secondary screen, all infective second-stage juveniles of M. incognita treated for 72 h with a spore suspension of KPS-E004 lost the ability to penetrate plant roots. Moreover, this strain had the highest root-knot disease control efficiency on chili (71.2 %). Thus, Streptomyces sp. KPS-E004 has potential as a biocontrol agent to control root-knot disease in organic and sustainable agricultural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barker KR (1985) Nematode extraction and bioassays. In: Barker KR, Carter CC, Sasser JN (eds) An advanced treatise on Meloidogyne, vol II., North Carolina State University GraphicsRaleigh, NC, pp 29–30

    Google Scholar 

  • Byrd DW Jr, Kirkpatrick T, Barker KR (1983) An improved technique for clearing and staining plant tissue for detection of nematodes. J Nematol 15:142–143

    Google Scholar 

  • Caillaud MC, Dubreuil G, Quentin M, Perfus-Barbeoch L, Lecomte P, Engler JDA, Abad P, Rosso MN, Favery B (2008) Root-knot nematodes manipulate plant cell functions during a compatible interaction. J Plant Physiol 165:104–113

    Article  CAS  PubMed  Google Scholar 

  • Cliff GM, Hirschmann H (1984) Meloidogyne microcephala n. sp. (Meloidogynidae) a root-knot nematode from Thailand. J Nematol 16:183–193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dicklow MB, Acosta N, Zuckerman BM (1993) A novel Streptomyces species for controlling plant-parasitic nematodes. J Chem Ecol 19:159–173

    Article  CAS  PubMed  Google Scholar 

  • Dong LQ, Zhang KQ (2006) Microbial control of plant-parasitic nematodes: a five party interaction. Plant Soil 288:31–45

    Article  CAS  Google Scholar 

  • Edwards CA, Fletcher KE (1988) Interaction between earthworms and microorganisms in organic matter breakdown. Agric Ecosyst Environ 24:235–249

    Article  Google Scholar 

  • Edwards CA, Lofty R (1977) The biology of earthworms. Chapman and Hall, London

    Book  Google Scholar 

  • El-Nagdi WMA, Youssef MMA (2004) Soaking faba bean seed in some bio agents as prophylactic treatment for controlling Meloidogyne incognita root knot nematode infection. J Pest Sci 77:75–78

    Article  Google Scholar 

  • El-Nakeeb MA, Lechevalier HA (1963) Selective isolation of aerobic actinomycetes. Appl Microbiol 11:75–77

    CAS  PubMed Central  PubMed  Google Scholar 

  • Food and Fertilizer Technology Center (2015) LT-M mixture for the management of plant parasitic nematode diseases. In: FFTC Publication Database. National Chung Hsing University, Taiwan. Available at DIALOG. http://www.fftc.agnet.org/library.php?func=view&id=20110901051121. Accessed 4 Aug 2015

  • Handoo ZA, Skantar AM, Carta LA, Erbe EF (2005) Morphological and molecular characterization of a new root-knot nematode, Meloidogyne thailandica n. sp. (Nematoda: Meloidogynidae), parasitizing ginger (Zingiber sp.). J Nematol 37:343–353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hasegawa T, Takisawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322

    Article  CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Stanley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Jayasinghe BATD, Parkinson D (2009) Earthworms as the vectors of actinomycetes antagonistic to litter decomposer fungi. Appl Soil Ecol 43:1–10

    Article  Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3 acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    Article  CAS  Google Scholar 

  • Kumar V, Bharti A, Negi YK, Gusain O, Pandey P, Bisht GS (2012) Screening of actinomycetes from earthworm castings for their antimicrobial activity and industrial enzymes. Braz J Microbiol 43:205–214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maldonado LA, Fragoso-Yáñez D, Pérez-García A, Rosellón-Druker J, Quintana ET (2009) Actinobacterial diversity from marine sediments collected in Mexico. Antonie Van Leeuwenhoek 95:111–120

    Article  CAS  PubMed  Google Scholar 

  • Mishra SK, Keller JE, Miller JR, Heisey RM, Nair MG, Putnam AR (1987) Insecticidal and nematicidal properties of microbial metabolites. J Industr Microbiol 2:267–276

    Article  Google Scholar 

  • Mitra A, Santra SC, Mukherjee J (2008) Distribution of actinomycetes, their antagonistic behavior and the physico-chemical characteristics of the world’s largest tidal mangrove forest. Appl Microbiol Biotechnol 80:685–695

    Article  CAS  PubMed  Google Scholar 

  • Park JO, El-Tarabily KA, Ghisalberti EL, Sivasithamparam K (2002) Pathogenesis of Streptoverticillium albireticuli on Caenorhabditis elegans and its antagonism to soil-borne fungal pathogens. Lett Appl Microbiol 35:361–365

    Article  PubMed  Google Scholar 

  • Parthasarathi K, Ranganathan LS, Anandi V, Zeyer J (2007) Diversity of microflora in the gut and casts of tropical composting earthworms reared on different substrates. J Environ Biol 28:87–97

    CAS  PubMed  Google Scholar 

  • Pathma J, Sakthivel N (2012) Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus 1:26

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruanpanun P, Khun-In A (2015) First report of Meloidogyne incognita caused root knot disease of upland rice in Thailand. J ISSAAS 21:68–77

    Google Scholar 

  • Ruanpanun P, Tangchitsomkid N, Hyde KD, Lumyong S (2010) Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 26:1569–1578

    Article  CAS  Google Scholar 

  • Ruanpanun P, Dame ZT, Laatsch H, Lumyong S (2011a) 3-Methoxy-2 methyl carbazole-1,4-quinone, carbazomycins D and F from Streptomyces sp. CMU JT005. FEMS Microbiol Lett 322:77–81

    Article  CAS  PubMed  Google Scholar 

  • Ruanpanun P, Laatsch H, Tangchitsomkid N, Lumyong S (2011b) Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU MH021, on Meloidogyne incognita. World J Microbiol Biotechnol 27:1373–1380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saxena G (2004) Biocontrol of nematode-borne diseases in vegetable crops. In: Mukerji KG (ed) Disease management of fruits and vegetables. Kluwer, The Netherlands, pp 397–450

    Chapter  Google Scholar 

  • Sun MH, Gao L, Shi YX, Li B, Liu XZ (2006) Fungi and actinomycetes associated with Meloidogyne spp. eggs and females in China and their biocontrol potential. J Invertebr Pathol 93:22–28

    Article  PubMed  Google Scholar 

  • Syers JK, Springett JA (2005) Earthworms and soil fertility. Plant Soil 76:93–104

    Article  Google Scholar 

  • Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385

    Article  CAS  Google Scholar 

  • Tarkka MT, Hampp R (2008) Secondary metabolites of soil streptomycetes in biotic interactions. In: Karlovsky P (ed) Secondary metabolites in soil ecology. Springer, Berlin, pp 107–126

    Chapter  Google Scholar 

  • Tarkka MT, Lehr NA, Hampp R, Schrey SD (2008) Plant behavior upon contact with Streptomycetes. Plant Signal Behav 3:917–919

    Article  PubMed Central  PubMed  Google Scholar 

  • Vijayakumar R, Muthukumar C, Thajuddin N, Panneerselvam A, Saravanamuthu R (2007) Studies on the diversity of actinomycetes in the Park Strait region of Bay of Bengal, India. Actinomycetologica 21:59–65

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Kasetsart University Research and Development Institute (KURDI) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornthip Ruanpanun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruanpanun, P., Chamswarng, C. Potential of actinomycetes isolated from earthworm castings in controlling root-knot nematode Meloidogyne incognita . J Gen Plant Pathol 82, 43–50 (2016). https://doi.org/10.1007/s10327-015-0637-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-015-0637-4

Keywords

Navigation