Skip to main content

Advertisement

Log in

Ecotoxicological response of algae to contaminants in aquatic environments: a review

  • Review Article
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Algae play a vital role in aquatic ecosystems, contributing to oxygen production and serving as a foundational component of the food chain. Environment stress and contamination can lead to harmful algal blooms, depleting oxygen levels and creating dead zones in water bodies. When exposed to contaminants such as industrial chemicals, pharmaceuticals, pesticides, heavy metals, and synthetic nano/microparticles, algae can exhibit adverse responses, disrupting the balance of aquatic ecosystems. Furthermore, environmental issues related to ecotoxicology responses of algae include the disruption of biodiversity and the loss of crucial habitats, which can lead to health issues. We reviewed the response of algae exposed to contaminants in the aquatic environments, including ecotoxicology and environmental stresses. The major points are: (1) The accumulation of polycyclic aromatic hydrocarbons in food chains and ecosystems and their uptake is widely revealed as a major concern for environmental health and human beings. (2) Bisphenol A can negatively impact algae by inhibiting biochemical and physiological processes, in which half maximal effective concentration varies from 1.0 mg L-1 to 100 mg L-1. (3) Though the level of per- and polyfluoroalkyl substances in the environment is generally low, ranging from ng L-1 to mg L-1, the combined contaminant exposure leads to significantly more significant toxic effects than individual compounds. (4) An exposure level of 1000ng L is unsafe for the ecosystems, and per- and polyfluoroalkyl substances could lead to algal growth inhibition, e.g., damage to the photosynthetic, inhibition of deoxyribonucleic acid replication, and reactive oxygen species metabolism. (5) The ecotoxicity of chemicals to algae is influenced by chemical, biological, and physical factors, creating complex effects at the biological community level. (6) This research indicated the importance of the ecotoxicology response of algae to contaminants, emphasizing the necessity for monitoring and strategic interventions to protect the sustainability of aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali I, Singh P, Aboul-Enein HY, Sharma B (2009) Chiral analysis of ibuprofen residues in water and sediment. Anal Lett 42(12):1747–1760. https://doi.org/10.1080/00032710903060768

    Article  CAS  Google Scholar 

  • Alimi OS, Farner Budarz J, Hernandez LM, Tufenkji N (2018) Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ Sci Technol 52(4):1704–1724

    Article  CAS  PubMed  Google Scholar 

  • Archer E, Petrie B, Kasprzyk-Hordern B, Wolfaardt GM (2017) The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere 174:437–446

    Article  CAS  PubMed  Google Scholar 

  • Arpin-Pont L, Bueno MJM, Gomez E, Fenet H (2016) Occurrence of PPCPs in the marine environment: a review. Environ Sci Pollut Res 23(6):4978–4991

    Article  Google Scholar 

  • Aruoja V, Dubourguier H-C, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4):1461–1468

    Article  CAS  PubMed  Google Scholar 

  • Aschberger K, Micheletti C, Sokull-Klüttgen B, Christensen FM (2011) Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health—lessons learned from four case studies. Environ Int 37(6):1143–1156

    Article  CAS  PubMed  Google Scholar 

  • Asghari S, Rajabi F, Tarrahi R, Salehi-Lisar SY, Asnaashari S, Omidi Y, Movafeghi A (2020) Potential of the green microalga Chlorella vulgaris to fight against fluorene contamination: evaluation of antioxidant systems and identification of intermediate biodegradation compounds. J Appl Phycol 32(1):411–419

    Article  CAS  Google Scholar 

  • Azizullah A, Khan S, Gao G, Gao K (2022) The interplay between bisphenol A and algae—a review. J King Saud Univ Sci 34(5):102050. https://doi.org/10.1016/j.jksus.2022.102050

    Article  Google Scholar 

  • Balaji-Prasath B, Wang Y, Su YP, Hamilton DP, Lin H, Zheng L, Zhang Y (2022) Methods to control harmful algal blooms: a review. Environ Chem Lett 20(5):3133–3152. https://doi.org/10.1007/s10311-022-01457-2

    Article  CAS  Google Scholar 

  • Banu AN, Kudesia N, Raut AM, Pakrudheen I, Wahengbam J (2021) Toxicity, bioaccumulation, and transformation of silver nanoparticles in aqua biota: a review. Environ Chem Lett 19(6):4275–4296. https://doi.org/10.1007/s10311-021-01304-w

    Article  CAS  Google Scholar 

  • Banyoi S-M, Porseryd T, Larsson J, Grahn M, Dinnétz P (2022) The effects of exposure to environmentally relevant PFAS concentrations for aquatic organisms at different consumer trophic levels: Systematic review and meta-analyses. Environ Pollut 315:120422. https://doi.org/10.1016/j.envpol.2022.120422

    Article  CAS  PubMed  Google Scholar 

  • Basheer AA (2018a) Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality 30(4):402–406

    Article  CAS  PubMed  Google Scholar 

  • Basheer AA (2018b) New generation nano-adsorbents for the removal of emerging contaminants in water. J Mol Liq 261:583–593. https://doi.org/10.1016/j.molliq.2018.04.021

    Article  CAS  Google Scholar 

  • Basheer AA, Ali I (2018) Stereoselective uptake and degradation of (±)-o, p-DDD pesticide stereomers in water-sediment system. Chirality 30(9):1088–1095

    Article  CAS  PubMed  Google Scholar 

  • Besha AT, Liu Y, Fang C, Bekele DN, Naidu R (2020) Assessing the interactions between micropollutants and nanoparticles in engineered and natural aquatic environments. Crit Rev Environ Sci Technol 50(2):135–215

    Article  Google Scholar 

  • Bi X, Dai W, Zhou Q, Wang Y, Dong S, Zhang S, Qiao X, Zhu G (2016) Effect of anthracene (ANT) on growth, microcystin (MC) production and expression of MC synthetase (mcy) genes in Microcystis aeruginosa. Water Air Soil Pollut 227(8):1–8

    Article  CAS  Google Scholar 

  • Boehm PD, Page DS (2007) Exposure elements in oil spill risk and natural resource damage assessments: a review. Hum Ecol Risk Assess 13(2):418–448

    Article  CAS  Google Scholar 

  • Bonefeld-Jørgensen EC, Long M, Hofmeister MV, Vinggaard AM (2007) Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: new data and a brief review. Environ Health Perspect 115(Suppl 1):69–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Brack W, Aissa SA, Backhaus T, Dulio V, Escher BI, Faust M, Hilscherova K, Hollender J, Hollert H, Müller C (2019) Effect-based methods are key. The European collaborative Project SOLUTIONS recommends integrating effect-based methods for diagnosis and monitoring of water quality. Environ Sci Europe 31(1):1–6

    Article  CAS  Google Scholar 

  • Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, De Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SPJ (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7(4):513–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byeon E, Kang H-M, Yoon C, Lee J-S (2021) Toxicity mechanisms of arsenic compounds in aquatic organisms. Aquat Toxicol 237:105901. https://doi.org/10.1016/j.aquatox.2021.105901

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Liang J, Ning X-a, Lai X, Li Y (2020) Algal toxicity induced by effluents from textile-dyeing wastewater treatment plants. J Environ Sci 91:199–208. https://doi.org/10.1016/j.jes.2020.01.004

    Article  CAS  Google Scholar 

  • Chae Y, An Y-J (2017) Effects of micro-and nanoplastics on aquatic ecosystems: current research trends and perspectives. Mar Pollut Bull 124(2):624–632

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Chen M, Wang Z, Qiu W, Wang J, Shen Y, Wang Y, Ge S (2016) Toxicological effects of chlorpyrifos on growth, enzyme activity and chlorophyll a synthesis of freshwater microalgae. Environ Toxicol Pharmacol 45:179–186

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Xiao Z, Yue L, Wang J, Feng Y, Zhu X, Wang Z, Xing B (2019) Algae response to engineered nanoparticles: current understanding, mechanisms and implications. Environ Sci Nano 6(4):1026–1042

    Article  CAS  Google Scholar 

  • Cheng C, Huang L, Ma R, Zhou Z, Diao J (2015) Enantioselective toxicity of lactofen and its metabolites in Scenedesmus obliquus. Algal Res 10:72–79

    Article  Google Scholar 

  • Chia MA, Lorenzi AS, Ameh I, Dauda S, Cordeiro-Araújo MK, Agee JT, Okpanachi IY, Adesalu AT (2021) Susceptibility of phytoplankton to the increasing presence of active pharmaceutical ingredients (APIs) in the aquatic environment: a review. Aquat Toxicol 234:105809

    Article  CAS  PubMed  Google Scholar 

  • Cizmas L, Sharma VK, Gray CM, McDonald TJ (2015) Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk. Environ Chem Lett 13(4):381–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couto E, Assemany PP, Assis Carneiro GC, Ferreira Soares DC (2022) The potential of algae and aquatic macrophytes in the pharmaceutical and personal care products (PPCPs) environmental removal: a review. Chemosphere 302:134808. https://doi.org/10.1016/j.chemosphere.2022.134808

    Article  CAS  PubMed  Google Scholar 

  • Czarny-Krzymińska K, Krawczyk B, Szczukocki D (2022) Toxicity of bisphenol A and its structural congeners to microalgae Chlorella vulgaris and Desmodesmus armatus. J Appl Phycol 34(3):1397–1410. https://doi.org/10.1007/s10811-022-02704-3

    Article  CAS  Google Scholar 

  • Danouche M, El Ghachtouli N, El Baouchi A, El Arroussi H (2020) Heavy metals phycoremediation using tolerant green microalgae: enzymatic and non-enzymatic antioxidant systems for the management of oxidative stress. J Environ Chem Eng 8(5):104460

    Article  CAS  Google Scholar 

  • de Almeida ACG, Petersen K, Langford K, Thomas KV, Tollefsen KE (2017) Mixture toxicity of five biocides with dissimilar modes of action on the growth and photosystem II efficiency of Chlamydomonas reinhardtii. J Toxicol Environ Health A 80(16–18):971–986

    Article  PubMed  Google Scholar 

  • De Baat ML, Kraak MHS, Van der Oost R, De Voogt P, Verdonschot PFM (2019) Effect-based nationwide surface water quality assessment to identify ecotoxicological risks. Water Res 159:434–443

    Article  PubMed  Google Scholar 

  • De Boeck G, Rodgers E, Town RM (2022) Chapter 3 - Using ecotoxicology for conservation: from biomarkers to modeling. In: Fangue NA, Cooke SJ, Farrell AP, Brauner CJ, Eliason EJ (eds) Fish physiology, vol 39. Academic Press, London, pp 111–174

    Google Scholar 

  • DeWitt JC, Peden-Adams MM, Keller JM, Germolec DR (2012) Immunotoxicity of perfluorinated compounds: recent developments. Toxicol Pathol 40(2):300–311

    Article  CAS  PubMed  Google Scholar 

  • Ding G, Wouterse M, Baerselman R, Peijnenburg WJGM (2012) Toxicity of polyfluorinated and perfluorinated compounds to lettuce (Lactuca sativa) and green algae (Pseudokirchneriella subcapitata). Arch Environ Contam Toxicol 62(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Du J, Izquierdo D, Naoum J, Ohlund L, Sleno L, Beisner BE, Lavaud J, Juneau P (2023) Pesticide responses of Arctic and temperate microalgae differ in relation to ecophysiological characteristics. Aquat Toxicol 254:106323. https://doi.org/10.1016/j.aquatox.2022.106323

    Article  CAS  PubMed  Google Scholar 

  • Elersek T, Notersberg T, Kovačič A, Heath E, Filipič M (2021) The effects of bisphenol A, F and their mixture on algal and cyanobacterial growth: from additivity to antagonism. Environ Sci Pollut Res 28(3):3445–3454. https://doi.org/10.1007/s11356-020-10329-7

    Article  CAS  Google Scholar 

  • Evich MG, Davis MJB, McCord JP, Acrey B, Awkerman JA, Knappe DRU, Lindstrom AB, Speth TF, Tebes-Stevens C, Strynar MJ (2022) Per-and polyfluoroalkyl substances in the environment. Science 375(6580):eabg065

    Article  Google Scholar 

  • Farré M, Gajda-Schrantz K, Kantiani L, Barceló D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393(1):81–95

    Article  PubMed  Google Scholar 

  • Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, Smith JS, Roberts SM (2021) Per-and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environ Toxicol Chem 40(3):606–630

    Article  CAS  PubMed  Google Scholar 

  • Fierro P, Valdovinos C, Arismendi I, Díaz G, Jara-Flores A, Habit E, Vargas-Chacoff L (2019) Examining the influence of human stressors on benthic algae, macroinvertebrate, and fish assemblages in Mediterranean streams of Chile. Sci Total Environ 686:26–37. https://doi.org/10.1016/j.scitotenv.2019.05.277

    Article  CAS  PubMed  Google Scholar 

  • Ford AT, Ågerstrand M, Brooks BW, Allen J, Bertram MG, Brodin T, Dang Z, Duquesne S, Sahm R, Hoffmann F, Hollert H, Jacob S, Klüver N, Lazorchak JM, Ledesma M, Melvin SD, Mohr S, Padilla S, Pyle GG, Scholz S, Saaristo M, Smit E, Steevens JA, van den Berg S, Kloas W, Wong BBM, Ziegler M, Maack G (2021) the role of behavioral ecotoxicology in environmental protection. Environ Sci Technol 55(9):5620–5628. https://doi.org/10.1021/acs.est.0c06493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freixa A, Acuña V, Sanchís J, Farré M, Barceló D, Sabater S (2018) Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Sci Total Environ 619:328–337

    Article  PubMed  Google Scholar 

  • Gala WR, Giesy JP (1994) Flow cytometric determination of the photoinduced toxicity of anthracene to the green alga Selenastrum capricornutum. Environ Toxicol Chem Int J 13(5):831–840

    Article  CAS  Google Scholar 

  • Geng W, Xiao X, Zhang L, Ni W, Li N (2022) Li Y (2021) Response and tolerance ability of Chlorella vulgaris to cadmium pollution stress. Environmental Technology 43(27):4391–4401

    Article  CAS  PubMed  Google Scholar 

  • Genter RB (1996) Ecotoxicology of inorganic chemical stress to algae. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology. Academic Press, San Diego, pp 403–468

    Chapter  Google Scholar 

  • Gerth WJ, Li J, Giannico GR (2017) Agricultural land use and macroinvertebrate assemblages in lowland temporary streams of the Willamette Valley, Oregon, USA. Agr Ecosyst Environ 236:154–165

    Article  Google Scholar 

  • González A, Vidal C, Espinoza D, Moenne A (2021) Anthracene induces oxidative stress and activation of antioxidant and detoxification enzymes in Ulva lactuca (Chlorophyta). Sci Rep 11(1):7748. https://doi.org/10.1038/s41598-021-87147-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grasso A, Ferrante M, Moreda-Piñeiro A, Arena G, Magarini R, Oliveri Conti G, Cristaldi A, Copat C (2022) Dietary exposure of zinc oxide nanoparticles (ZnO-NPs) from canned seafood by single particle ICP-MS: balancing of risks and benefits for human health. Ecotoxicol Environ Saf 231:113217. https://doi.org/10.1016/j.ecoenv.2022.113217

    Article  CAS  PubMed  Google Scholar 

  • Griffith AW, Gobler CJ (2020) Harmful algal blooms: a climate change co-stressor in marine and freshwater ecosystems. Harmful Algae 91:101590

    Article  PubMed  Google Scholar 

  • Gu P, Li Q, Zhang W, Zheng Z, Luo X (2020) Effects of different metal ions (Ca, Cu, Pb, Cd) on formation of cyanobacterial blooms. Ecotoxicol Environ Saf 189:109976

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Du Y, Zheng F, Wang J, Wang Z, Ji R, Chen J (2017) Bioaccumulation and elimination of bisphenol a (BPA) in the alga Chlorella pyrenoidosa and the potential for trophic transfer to the rotifer Brachionus calyciflorus. Environ Pollut 227:460–467

    Article  CAS  PubMed  Google Scholar 

  • Hepburn E, Northway A, Bekele D, Liu G-J, Currell M (2018) A method for separation of heavy metal sources in urban groundwater using multiple lines of evidence. Environ Pollut 241:787–799

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Gao M, Wang W, Liu Z, Qian W, Chen CC, Zhu X, Cai Z (2022) Effects of manufactured nanomaterials on algae: implications and applications. Front Environ Sci Eng 16(9):122. https://doi.org/10.1007/s11783-022-1554-3

    Article  CAS  Google Scholar 

  • Jamers A, Blust R, De Coen W, Griffin JL, Jones OAH (2013) An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 126:355–364

    Article  CAS  PubMed  Google Scholar 

  • Ji M-K, Kabra AN, Choi J, Hwang J-H, Kim JR, Abou-Shanab RAI, Oh Y-K, Jeon B-H (2014) Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris. Ecol Eng 73:260–269

    Article  Google Scholar 

  • Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269(2):105–119. https://doi.org/10.1016/j.tox.2009.08.016

    Article  CAS  PubMed  Google Scholar 

  • Kottuparambil S, Park J (2019) Anthracene phytotoxicity in the freshwater flagellate alga Euglena agilis Carter. Sci Rep 9(1):1–11

    Article  CAS  Google Scholar 

  • Kreutzer A, Faetsch S, Heise S, Hollert H, Witt G (2022) Passive dosing: assessing the toxicity of individual PAHs and recreated mixtures to the microalgae Raphidocelis subcapitata. Aquatic Toxicol 249:106220

    Article  CAS  Google Scholar 

  • Kumaresan V, Nizam F, Ravichandran G, Viswanathan K, Palanisamy R, Bhatt P, Arasu MV, Al-Dhabi NA, Mala K, Arockiaraj J (2017) Transcriptome changes of blue-green algae, Arthrospira sp. in response to sulfate stress. Algal Res 23:96–103. https://doi.org/10.1016/j.algal.2017.01.012

    Article  Google Scholar 

  • Kurade MB, Kim JR, Govindwar SP, Jeon B-H (2016) Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: microalgal tolerance to xenobiotic pollutants and metabolism. Algal Res 20:126–134

    Article  Google Scholar 

  • Kwok KWH, Leung KMY, Flahaut E, Cheng J, Cheng SH (2010) Chronic toxicity of double-walled carbon nanotubes to three marine organisms: influence of different dispersion methods. Nanomedicine 5(6):951–961

    Article  CAS  PubMed  Google Scholar 

  • Ky NM, Hung NTQ, Manh NC, Lap BQ, Dang HTT, Ozaki A (2020) Assessment of nutrients removal by constructed wetlands using reed grass (Phragmites australis L.) and Vetiver Grass (Vetiveria Zizanioides L.). J Fac Agric Kyushu Univ 65(1):149–156

    Article  CAS  Google Scholar 

  • Ky NM, Lin C, Nguyen H-L, Hung NTQ, La DD, Nguyen XH, Chang SW, Chung WJ, Nguyen DD (2023) Occurrence, fate, and potential risk of pharmaceutical pollutants in agriculture: challenges and environmentally friendly solutions. Sci Total Environ 899:165323. https://doi.org/10.1016/j.scitotenv.2023.165323

    Article  CAS  Google Scholar 

  • Lee MY, Shin HW (2003) Cadmium-induced changes in antioxidant enzymes from the marine alga Nannochloropsis oculata. J Appl Phycol 15(1):13–19

    Article  MathSciNet  CAS  Google Scholar 

  • Leong YK, Chang J-S (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Biores Technol 303:122886

    Article  CAS  Google Scholar 

  • Li Y, Liu X, Zheng X, Yang M, Gao X, Huang J, Zhang L, Fan Z (2021) Toxic effects and mechanisms of PFOA and its substitute GenX on the photosynthesis of Chlorella pyrenoidosa. Sci Total Environ 765:144431

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang Y, Li N, He Y, Xiao H, Fang D, Chen C (2022) Toxic effects of bisphenol A and bisphenol S on Chlorella Pyrenoidosa under single and combined action. Int J Environ Res Public Health 19(7):4245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Yang R, Yin N, Faiola F (2021) Evaluation of the effects of low nanomolar bisphenol A-like compounds’ levels on early human embryonic development and lipid metabolism with human embryonic stem cell in vitro differentiation models. J Hazard Mater 407:124387

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Chen S, Quan X, Jin YH (2008) Toxic effect of serial perfluorosulfonic and perfluorocarboxylic acids on the membrane system of a freshwater alga measured by flow cytometry. Environ Toxicol Chem Int J 27(7):1597–1604

    Article  CAS  Google Scholar 

  • Liu W, Majumdar S, Li WW, Keller AA, Slaveykova VI (2021a) Impact of silver nanoparticles on the biouptake, physiological responses and metabolic perturbations in freshwater alga Poterioochromonas malhamensis. Toxicol Lett 350:S181. https://doi.org/10.1016/S0378-4274(21)00668-8

    Article  Google Scholar 

  • Liu X, Li Y, Zheng X, Zhang L, Lyu H, Huang H, Fan Z (2021b) Anti-oxidant mechanisms of Chlorella pyrenoidosa under acute GenX exposure. Sci Total Environ 797:149005

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zheng X, Zhang L, Li J, Li Y, Huang H, Fan Z (2022) Joint toxicity mechanisms of binary emerging PFAS mixture on algae (Chlorella pyrenoidosa) at environmental concentration. J Hazard Mater 437:129355. https://doi.org/10.1016/j.jhazmat.2022.129355

    Article  CAS  PubMed  Google Scholar 

  • Long Z, Ji J, Yang K, Lin D, Wu F (2012) Systematic and quantitative investigation of the mechanism of carbon nanotubes’ toxicity toward algae. Environ Sci Technol 46(15):8458–8466

    Article  CAS  PubMed  Google Scholar 

  • Lu G-H, Piao H-T, Gai N, Shao P-W, Zheng Y, Jiao X-C, Rao Z, Yang Y-L (2019) Pharmaceutical and personal care products in surface waters from the inner city of Beijing, China: influence of hospitals and reclaimed water irrigation. Arch Environ Contam Toxicol 76(2):255–264

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Qu Q, Lavoie M, Pan X, Peijnenburg W, Zhou Z, Pan X, Cai Z, Qian H (2020) Insights into the transcriptional responses of a microbial community to silver nanoparticles in a freshwater microcosm. Environ Pollut 258:113727

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Zhang Q, Zhang Z, Hu B, Chen J, Chen J, Qian H (2021) Pollutant toxicology with respect to microalgae and cyanobacteria. J Environ Sci 99:175–186. https://doi.org/10.1016/j.jes.2020.06.033

    Article  CAS  Google Scholar 

  • Lukhele LP, Mamba BB, Musee N, Wepener V (2015) Acute toxicity of double-walled carbon nanotubes to three aquatic organisms. J Nanomater 2015:3

    Article  Google Scholar 

  • Luo Y, Liang J, Zeng G, Chen M, Mo D, Li G, Zhang D (2018) Seed germination test for toxicity evaluation of compost: its roles, problems and prospects. Waste Manage 71:109–114

    Article  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101(1):13–30

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Zhou B, Chen F, Pan K (2021) How marine diatoms cope with metal challenge: insights from the morphotype-dependent metal tolerance in Phaeodactylum tricornutum. Ecotoxicol Environ Saf 208:111715

    Article  CAS  PubMed  Google Scholar 

  • Magdaleno A, Saenz ME, Juárez AB, Moretton J (2015) Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata. Ecotoxicol Environ Saf 113:72–78

    Article  CAS  PubMed  Google Scholar 

  • Mallick N, Mohn FH (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157(2):183–193

    Article  CAS  Google Scholar 

  • Mao F, He Y, Kushmaro A, Gin KY-H (2017) Effects of benzophenone-3 on the green alga Chlamydomonas reinhardtii and the cyanobacterium Microcystis aeruginosa. Aquat Toxicol 193:1–8

    Article  CAS  PubMed  Google Scholar 

  • Martín-Díaz ML, Gagné F, Blaise C (2009) The use of biochemical responses to assess ecotoxicological effects of pharmaceutical and personal care products (PPCPs) after injection in the mussel Elliptio complanata. Environ Toxicol Pharmacol 28(2):237–242

    Article  PubMed  Google Scholar 

  • Medithi S, Jonnalagadda PR, Jee B (2021) Predominant role of antioxidants in ameliorating the oxidative stress induced by pesticides. Arch Environ Occup Health 76(2):61–74

    Article  CAS  PubMed  Google Scholar 

  • Miazek K, Brozek-Pluska B (2019) Effect of PHRs and PCPs on microalgal growth, metabolism and microalgae-based bioremediation processes: a review. Int J Mol Sci 20(10):2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middepogu A, Hou J, Gao X, Lin D (2018) Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. Ecotoxicol Environ Saf 161:497–506

    Article  CAS  PubMed  Google Scholar 

  • Minguez L, Pedelucq J, Farcy E, Ballandonne C, Budzinski H, Halm-Lemeille M-P (2016) Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environ Sci Pollut Res 23(6):4992–5001

    Article  CAS  Google Scholar 

  • Minh-Ky N, Lin C, Nguyen H-L, Le V-G, Haddout S, Um M-J, Chang SW, Nguyen DD (2023) Ecotoxicity of micro- and nanoplastics on aquatic algae: facts, challenges, and future opportunities. J Environ Manage 346:118982. https://doi.org/10.1016/j.jenvman.2023.118982

    Article  CAS  Google Scholar 

  • Mofeed J, Mosleh YY (2013) Toxic responses and antioxidative enzymes activity of Scenedesmus obliquus exposed to fenhexamid and atrazine, alone and in mixture. Ecotoxicol Environ Saf 95:234–240

    Article  CAS  PubMed  Google Scholar 

  • Natarajan L, Soupam D, Dey S, Chandrasekaran N, Kundu R, Paul S, Mukherjee A (2022) Toxicity of polystyrene microplastics in freshwater algae Scenedesmus obliquus: effects of particle size and surface charge. Toxicol Rep 9:1953–1961. https://doi.org/10.1016/j.toxrep.2022.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naveed S, Li C, Lu X, Chen S, Yin B, Zhang C, Ge Y (2019) Microalgal extracellular polymeric substances and their interactions with metal (loid) s: a review. Crit Rev Environ Sci Technol 49(19):1769–1802

    Article  CAS  Google Scholar 

  • Nguyen MK, Hadi M, Lin C, Nguyen H-L, Thai V-B, Hoang H-G, Vo D-VN, Tran H-T (2022a) Microplastics in sewage sludge: distribution, toxicity, identification methods, and engineered technologies. Chemosphere 308:136455. https://doi.org/10.1016/j.chemosphere.2022.136455

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MK, Lin C, Hung NTQ, Vo D-VN, Nguyen KN, Thuy BTP, Hoang HG, Tran HT (2022b) Occurrence and distribution of microplastics in peatland areas: a case study in Long An province of the Mekong Delta. Vietnam Sci Total Environ 844:157066. https://doi.org/10.1016/j.scitotenv.2022.157066

    Article  CAS  PubMed  Google Scholar 

  • Nguyen M-K, Lin C, Nguyen H-L, Le V-R, Kl P, Singh J, Chang SW, Um M-J, Nguyen DD (2023a) Emergence of microplastics in the aquatic ecosystem and their potential effects on health risks: the insights into Vietnam. J Environ Manage 344:118499. https://doi.org/10.1016/j.jenvman.2023.118499

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MK, Lin C, Quang Hung NT, Hoang H-G, Vo D-VN, Tran H-T (2023b) Investigation of ecological risk of microplastics in peatland areas: a case study in Vietnam. Environ Res 220:115190. https://doi.org/10.1016/j.envres.2022.115190

    Article  CAS  PubMed  Google Scholar 

  • Niu Z, Na J, Xu Wa WuN, Zhang Y (2019) The effect of environmentally relevant emerging per- and polyfluoroalkyl substances on the growth and antioxidant response in marine Chlorella sp. Environ Pollut 252:103–109. https://doi.org/10.1016/j.envpol.2019.05.103

    Article  CAS  PubMed  Google Scholar 

  • Nizzetto L, Lohmann R, Gioia R, Jahnke A, Temme C, Dachs J, Herckes P, Guardo AD, Jones KC (2008) PAHs in air and seawater along a North-South Atlantic transect: trends, processes and possible sources. Environ Sci Technol 42(5):1580–1585

    Article  CAS  PubMed  Google Scholar 

  • Othman HBP, Frances R, Asma SH, Leboulanger C (2023) Effects of polycyclic aromatic hydrocarbons on marine and freshwater microalgae—a review. J Hazard Mater 441:129869. https://doi.org/10.1016/j.jhazmat.2022.129869

    Article  CAS  PubMed  Google Scholar 

  • Pastorino P, Broccoli A, Anselmi S, Bagolin E, Prearo M, Barceló D, Renzi M (2022) The microalgae Chaetoceros tenuissimus exposed to contaminants of emerging concern: a potential alternative to standardized species for marine quality assessment. Ecol Ind 141:109075. https://doi.org/10.1016/j.ecolind.2022.109075

    Article  CAS  Google Scholar 

  • Pereira FF, Paris EC, Bresolin JD, Mitsuyuki MC, Ferreira MD, Corrêa DS (2020) The effect of ZnO nanoparticles morphology on the toxicity towards microalgae Pseudokirchneriella subcapitata. J Nanosci Nanotechnol 20(1):48–63

    Article  CAS  PubMed  Google Scholar 

  • Pessôa LC, Deamici KM, Pontes LAM, Druzian JI, Assis DdJ (2021) Technological prospection of microalgae-based biorefinery approach for effluent treatment. Algal Res 60:102504. https://doi.org/10.1016/j.algal.2021.102504

    Article  Google Scholar 

  • Phan CC, Nguyen TQH, Nguyen MK, Park KH, Bae GN, Seung-bok L, Bach QV (2020) Aerosol mass and major composition characterization of ambient air in Ho Chi Minh City. Vietnam Int J Environ Sci Technol 17(6):3189–3198. https://doi.org/10.1007/s13762-020-02640-0

    Article  CAS  Google Scholar 

  • Pilatti FK, Ramlov F, Schmidt EC, Kreusch M, Pereira DT, Costa C, de Oliveira ER, Bauer CM, Rocha M, Bouzon ZL (2016) In vitro exposure of Ulva lactuca Linnaeus (Chlorophyta) to gasoline–Biochemical and morphological alterations. Chemosphere 156:428–437

    Article  CAS  PubMed  Google Scholar 

  • Pradhan D, Sukla LB, Mishra BB, Devi N (2019) Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. J Clean Prod 209:617–629

    Article  CAS  Google Scholar 

  • Priyadarshini E, Priyadarshini SS, Pradhan N (2019) Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Appl Microbiol Biotechnol 103(8):3297–3316

    Article  CAS  PubMed  Google Scholar 

  • Qian H, Li J, Pan X, Sun L, Lu T, Ran H, Fu Z (2011) Combined effect of copper and cadmium on heavy metal ion bioaccumulation and antioxidant enzymes induction in Chlorella vulgaris. Bull Environ Contam Toxicol 87(5):512–516

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y-W, Zeng EY, Qiu H, Yu K, Cai S (2017) Bioconcentration of polybrominated diphenyl ethers and organochlorine pesticides in algae is an important contaminant route to higher trophic levels. Sci Total Environ 579:1885–1893. https://doi.org/10.1016/j.scitotenv.2016.11.192

    Article  CAS  PubMed  Google Scholar 

  • Quetglas-Llabrés MM, Tejada S, Capó X, Langley E, Sureda A, Box A (2020) Antioxidant response of the sea urchin Paracentrotus lividus to pollution and the invasive algae Lophocladia lallemandii. Chemosphere 261:127773. https://doi.org/10.1016/j.chemosphere.2020.127773

    Article  CAS  PubMed  Google Scholar 

  • Rana S, Kumar A (2022) Toxicity of nanoparticles to algae-bacterial co-culture: knowns and unknowns. Algal Res 62:102641. https://doi.org/10.1016/j.algal.2022.102641

    Article  Google Scholar 

  • Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, Kidd KA, MacCormack TJ, Olden JD, Ormerod SJ (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev 94(3):849–873

    Article  PubMed  Google Scholar 

  • Rhee G, Thompson P-A (1992) Sorption of hydrophobic organic contaminants and trace metals on phytoplankton and implications for toxicity assessment. J Aquat Ecosyst Health 1(3):175–191

    Article  Google Scholar 

  • Rohr JR, Salice CJ, Nisbet RM (2016) The pros and cons of ecological risk assessment based on data from different levels of biological organization. Crit Rev Toxicol 46(9):756–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem M, Iqbal J, Shah MH (2019) Seasonal variations, risk assessment and multivariate analysis of trace metals in the freshwater reservoirs of Pakistan. Chemosphere 216:715–724

    Article  CAS  PubMed  Google Scholar 

  • Salomão ALdS, Soroldoni S, Marques M, Hogland W, Bila DM (2014) Effects of single and mixed estrogens on single and combined cultures of D subspicatus and P subcapitata. Bull Environ. Contam. Toxicol. 93(2):215–221

    Article  PubMed  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20(6):243–248

    Article  CAS  PubMed  Google Scholar 

  • Schmitt-Jansen M, Veit U, Dudel G, Altenburger R (2008) An ecological perspective in aquatic ecotoxicology: approaches and challenges. Basic Appl Ecol 9(4):337–345. https://doi.org/10.1016/j.baae.2007.08.008

    Article  CAS  Google Scholar 

  • Schuijt LM, Peng F-J, van den Berg SJP, Dingemans MML, Van den Brink PJ (2021) (Eco)toxicological tests for assessing impacts of chemical stress to aquatic ecosystems: facts, challenges, and future. Sci Total Environ 795:148776. https://doi.org/10.1016/j.scitotenv.2021.148776

    Article  CAS  PubMed  Google Scholar 

  • Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L, Knauer K (2011) Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45(14):6136–6144

    Article  CAS  PubMed  Google Scholar 

  • Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41(6):2323–2343

    Article  CAS  PubMed  Google Scholar 

  • Sjollema SB, Redondo-Hasselerharm P, Leslie HA, Kraak MHS, Vethaak AD (2016) Do plastic particles affect microalgal photosynthesis and growth? Aquat Toxicol 170:259–261

    Article  CAS  PubMed  Google Scholar 

  • Softcheck KA (2021) Marine algal sensitivity to source and weathered oils. Environ Toxicol Chem 40(10):2742–2754

    Article  CAS  PubMed  Google Scholar 

  • Suman TY, Radhika Rajasree SR, Kirubagaran R (2015) Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicol Environ Saf 113:23–30. https://doi.org/10.1016/j.ecoenv.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  • Tato T, Beiras R (2019) The use of the marine microalga Tisochrysis lutea (T-iso) in standard toxicity tests; comparative sensitivity with other test species. Front Mar Sci 6:488

    Article  Google Scholar 

  • Tišler T, Krel A, Gerželj U, Erjavec B, Dolenc MS, Pintar A (2016) Hazard identification and risk characterization of bisphenols A, F and AF to aquatic organisms. Environ Pollut 212:472–479

    Article  PubMed  Google Scholar 

  • Tomar RS, Jajoo A (2021) Enzymatic pathway involved in the degradation of fluoranthene by microalgae Chlorella vulgaris. Ecotoxicology 30(2):268–276

    Article  CAS  PubMed  Google Scholar 

  • Tomar RS, Rai-Kalal P, Jajoo A (2022) Impact of polycyclic aromatic hydrocarbons on photosynthetic and biochemical functions and its bioremediation by Chlorella vulgaris. Algal Res 67:102815. https://doi.org/10.1016/j.algal.2022.102815

    Article  Google Scholar 

  • Torres MA, Barros MP, Campos SCG, Pinto E, Rajamani S, Sayre RT, Colepicolo P (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71(1):1–15. https://doi.org/10.1016/j.ecoenv.2008.05.009

    Article  CAS  PubMed  Google Scholar 

  • Tran H-T, Dang B-T, Thuy LTT, Hoang H-G, Bui X-T, Le V-G, Lin C, Nguyen M-K, Nguyen K-Q, Nguyen P-T, Binh QA, Bui T-PT (2022a) Advanced treatment technologies for the removal of organic chemical sunscreens from wastewater: a review. Curr Pollut Rep 8(3):288–302. https://doi.org/10.1007/s40726-022-00221-y

    Article  CAS  Google Scholar 

  • Tran HT, Lesage G, Lin C, Nguyen TB, Bui X-T, Nguyen MK, Nguyen DH, Hoang HG, Nguyen DD (2022) Chapter 3—Activated sludge processes and recent advances. In: Bui X-T, Nguyen DD, Nguyen P-D, Ngo HH, Pandey A (eds) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 49–79

    Chapter  Google Scholar 

  • Tsygankov VY (2019) Organochlorine pesticides in marine ecosystems of the Far Eastern Seas of Russia (2000–2017). Water Res 161:43–53

    Article  CAS  PubMed  Google Scholar 

  • Tuan Tran H, Lin C, Bui X-T, Ky Nguyen M, Dan Thanh Cao N, Mukhtar H, Giang Hoang H, Varjani S, Hao Ngo H, Nghiem LD (2022) Phthalates in the environment: characteristics, fate and transport, and advanced wastewater treatment technologies. Biores Technol 344:126249. https://doi.org/10.1016/j.biortech.2021.126249

    Article  CAS  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149

    Article  PubMed  Google Scholar 

  • Vardhan KH, Kumar PS, Panda RC (2019) A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. J Mol Liq 290:111197

    Article  CAS  Google Scholar 

  • Vieira LR, Guilhermino L (2012) Multiple stress effects on marine planktonic organisms: influence of temperature on the toxicity of polycyclic aromatic hydrocarbons to Tetraselmis chuii. J Sea Res 72:94–98

    Article  CAS  Google Scholar 

  • Wang XH, Yu Y, Fu L, Tai HW, Qin WC, Su LM, Zhao YH (2016) Comparison of chemical toxicity to different algal species based on interspecies correlation, species sensitivity, and excess toxicity. CLEAN Soil Air Water 44(7):803–808

    Article  CAS  Google Scholar 

  • Wang H, Jin M, Mao W, Chen C, Fu L, Li Z, Du S, Liu H (2020) Photosynthetic toxicity of non-steroidal anti-inflammatory drugs (NSAIDs) on green algae Scenedesmus obliquus. Sci Total Environ 707:136176

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Xu F, Song L, Li J, Wang Q (2021) Bisphenol A exposure prenatally delays bone development and bone mass accumulation in female rat offspring via the ERβ/HDAC5/TGFβ signaling pathway. Toxicology 458:152830

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Li W, Jin M, Zhang L, Qin L, Geng W (2023) Responses and tolerance mechanisms of microalgae to heavy metal stress: a review. Mar Environ Res 183:105805. https://doi.org/10.1016/j.marenvres.2022.105805

    Article  CAS  PubMed  Google Scholar 

  • Xin X, Huang G, An C, Lu C, Xiong W (2020) Exploring the biophysicochemical alteration of green alga Asterococcus superbus interactively affected by nanoparticles, triclosan and illumination. J Hazard Mater 398:122855. https://doi.org/10.1016/j.jhazmat.2020.122855

    Article  CAS  PubMed  Google Scholar 

  • Xin X, Huang G, Zhang B (2021) Review of aquatic toxicity of pharmaceuticals and personal care products to algae. J Hazard Mater 410:124619. https://doi.org/10.1016/j.jhazmat.2020.124619

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Xu X, Li C, Li J, Sun M, Zhang L (2022) Is mulch film itself the primary source of meso-and microplastics in the mulching cultivated soil? A preliminary field study with econometric methods. Environ Pollut 299:118915

    Article  CAS  PubMed  Google Scholar 

  • Yang Y-j, Hong Y-p (2012) Combination effects of bisphenol A and isobutylparaben on the green macroalga Ulva pertusa. Toxicol Environ Heal Sci 4(1):37–41

    Article  Google Scholar 

  • Yap JK, Sankaran R, Chew KW, Halimatul Munawaroh HS, Ho S-H, Rajesh Banu J, Show PL (2021) Advancement of green technologies: a comprehensive review on the potential application of microalgae biomass. Chemosphere 281:130886. https://doi.org/10.1016/j.chemosphere.2021.130886

    Article  CAS  PubMed  Google Scholar 

  • Zamani-Ahmadmahmoodi R, Malekabadi MB, Rahimi R, Johari SA (2020) Aquatic pollution caused by mercury, lead, and cadmium affects cell growth and pigment content of marine microalga, Nannochloropsis Oculata. Environ Monit Assess 192(6):1–11

    Article  Google Scholar 

  • Zhang A, Xu T, Zou H, Pang Q (2015) Comparative proteomic analysis provides insight into cadmium stress responses in brown algae Sargassum fusiforme. Aquat Toxicol 163:1–15. https://doi.org/10.1016/j.aquatox.2015.03.018

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Chen X, Wang J, Tan L (2017) Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae. Environ Pollut 220:1282–1288

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Wang X, Ma Z, Luan Z, Wang Y, Wang Z, Wang L (2020) Removal of phenolic substances from wastewater by algae. Rev Environ Chem Lett 18(2):377–392. https://doi.org/10.1007/s10311-019-00953-2

    Article  CAS  Google Scholar 

  • Zhang X, Zhang Z-F, Zhang X, Yang P-F, Li Y-F, Cai M, Kallenborn R (2021) Dissolved polycyclic aromatic hydrocarbons from the Northwestern Pacific to the Southern Ocean: surface seawater distribution, source apportionment, and air-seawater exchange. Water Res 207:117780

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zheng X, Liu X, Li J, Li Y, Wang Z, Zheng N, Wang X, Fan Z (2023) Toxic effects of three perfluorinated or polyfluorinated compounds (PFCs) on two strains of freshwater algae: implications for ecological risk assessments. J Environ Sci 131:48–58. https://doi.org/10.1016/j.jes.2022.10.042

    Article  CAS  Google Scholar 

  • Zhao J, Cao X, Wang Z, Dai Y, Xing B (2017) Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae. Water Res 111:18–27

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Zhao X, Ni X, Ben Y, Guo R, An L (2016) Bioaccumulation characteristics of polybrominated diphenyl ethers in the marine food web of Bohai Bay. Chemosphere 150:424–430

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Zou D, Du H (2011) Physiological responses of Hizikia fusiformis to copper and cadmium exposure. Bot Mar 54:431–439

    Article  CAS  Google Scholar 

  • Zhu Z-l, Wang S-c, Zhao F-f, Wang S-g, Liu F-f, Liu G-z (2019) Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum. Environ Pollut 246:509–517

    Article  CAS  PubMed  Google Scholar 

  • Zounkova R, Kovalova L, Blaha L, Dott W (2010) Ecotoxicity and genotoxicity assessment of cytotoxic antineoplastic drugs and their metabolites. Chemosphere 81(2):253–260

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Van-Giang Le: Conceptualization, Data curation, Methodology, Writing – original draft; Minh-Ky Nguyen: Conceptualization, Data curation, Investigation, Writing – original draft – review & editing; Hoang-Lam Nguyen: Data curation, Visualization, Writing – review & editing; Van-Anh Thai: Methodology, Writing – review & editing; Van-Re Le: Methodology, Writing – review & editing; Vu Q. M.: Supervision, Visualization, Writing –review & editing; Perumal Asaithambi: Visualization, Writing –review & editing; Soon W. Chang: Supervision, Visualization, Writing –review & editing; D. Duc Nguyen: Resources, Data curation, Visualization, Writing –review & editing.

Corresponding authors

Correspondence to Minh-Ky Nguyen or D. Duc Nguyen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, VG., Nguyen, MK., Nguyen, HL. et al. Ecotoxicological response of algae to contaminants in aquatic environments: a review. Environ Chem Lett 22, 919–939 (2024). https://doi.org/10.1007/s10311-023-01680-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-023-01680-5

Keywords

Navigation