Skip to main content

Advertisement

Log in

Carcinogenicity of nicotine and signal pathways in cancer progression: a review

  • Review Article
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Smoking is a major environmental factor causing nearly a third of cancer-related deaths. Nicotine accounts for 95% of tobacco’s alkaloid content and 1.5% of the commercial cigarette products weight. With most cigarettes containing 1.2–2.9 mg of nicotine, heavy smokers can absorb 20–40 mg/day, resulting in plasma concentrations of 23–35 ng/ml. Nicotine exert potential oncogenic effects primarily through nicotinic acetylcholine receptors, without involving signal pathways or other receptors. Recent reviews have recognized the relationship between nicotine and a certain type of tumor. However, there is no systematic overview on the signal pathways related to nicotine via receptors or non-receptors in a variety of tumors. This review discusses emerging evidence of the relationship between cancer progression and nicotine. The list of cancers reportedly connected to nicotine is expanding and presently contains lung carcinoma, as well as cervical, colon, gastric, pancreatic, breast, liver, bladder, head and neck cancers including nasopharynx, tongue and oral cavity. There is growing evidence through the use of animal xenograft models and cell culture systems, that (1) nicotine's carcinogenic role stems from multiple signaling mechanisms, primarily involving both non-receptor-mediated actions and receptor-mediated effects, including nicotinic acetylcholine receptors, β-adrenergic receptors and epidermal growth factor receptors, as well as transforming growth factor β receptors; (2) nicotine could induce chromosomal abnormalities, DNA damage, and micronuclei formation; (3) nicotine also can enhance oxidative stress, leading to tumor initiation or progression due to excessive production of reactive oxygen species. Based on these findings, nicotine seems to be a potent oncogenic agent in modulating tumor cell proliferation, invasion and migration by various signaling pathways associated with chemical carcinogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abbas T, Dutta A (2009) P21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414

    Article  CAS  Google Scholar 

  • Adediran JA, Mnkeni PNS, Mafu NC, Muyima NYO (2004) Changes in chemical properties and temperature during the composting of tobacco waste with other organic materials, and effects of resulting composts on lettuce (Lactuca sativa L.) and spinach (Spinacea oleracea L.). Biol Agric Hortic 22:101–119

    Article  Google Scholar 

  • Al-Wadei MH, Al-Wadei HA, Schuller HM (2012) Effects of chronic nicotine on the autocrine regulation of pancreatic cancer cells and pancreatic duct epithelial cells by stimulatory and inhibitory neurotransmitters. Carcinogenesis 33:1745–1753

    Article  CAS  Google Scholar 

  • Alamoud KA, Kukuruzinska MA (2018) Emerging insights into Wnt/β-catenin signaling in head and neck cancer. J Dent Res 97:665–673

    Article  CAS  Google Scholar 

  • Ali I, Aboul-Enein HY, Ghanem A (2005) Enantioselective toxicities and carcinogenesis. Curr Pharm Anal 1:109–125

    Article  CAS  Google Scholar 

  • Ali I, Wani WA, Haque A, Saleem K (2013) Glutamic acid and its derivatives: candidates for rational design of anticancer drugs. Future Med Chem 5:961–978

    Article  CAS  Google Scholar 

  • Ali I, Wani WA, Saleem K, Hseih M (2014) Anticancer metallodrugs of glutamic acid sulphonamides: in silico, DNA binding, hemolysis and anticancer studies. RSC Adv 4:29629–29641

    Article  CAS  Google Scholar 

  • Ali I, Lone MN, Al-Othman ZA, Al-Warthan A (2017) Insights into the pharmacology of new heterocycles embedded with oxopyrrolidine rings: DNA binding, molecular docking, and anticancer studies. J Mol Liq 234:391–402

    Article  CAS  Google Scholar 

  • Ali I, Alsehli M, Scotti L, Tullius Scotti M, Tsai ST, Yu RS, Hsieh MF, Chen JC (2020) Progress in polymeric nano-medicines for theranostic cancer treatment. Polymers 12:598

    Article  CAS  Google Scholar 

  • Androutsopoulos VP, Tsatsakis AM, Spandidos DA (2009) Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer 9:187

    Article  Google Scholar 

  • Asati V, Mahapatra DK, Bharti SK (2016) PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: structural and pharmacological perspectives. Eur J Med Chem 109:314–341

    Article  CAS  Google Scholar 

  • Banožić M, Babić J, Jokić S (2020) Recent advances in extraction of bioactive compounds from tobacco industrial waste—a review. Ind Crops Prod 144:112009

    Article  Google Scholar 

  • Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132:3151–3161

    Article  CAS  Google Scholar 

  • Becerra SP, Notario V (2013) The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential. Nat Rev Cancer 13:258–271

    Article  CAS  Google Scholar 

  • Ben Q, An W, Sun Y, Qian A, Liu J, Zou D, Yuan Y (2020a) A nicotine-induced positive feedback loop between HIF1A and YAP1 contributes to epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 39:181

    Article  Google Scholar 

  • Ben Q, Sun Y, Liu J, Wang W, Zou D, Yuan Y (2020b) Nicotine promotes tumor progression and epithelial–mesenchymal transition by regulating the miR-155-5p/NDFIP1 axis in pancreatic ductal adenocarcinoma. Pancreatology 20:698–708

    Article  CAS  Google Scholar 

  • Benowitz NL (2009) Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 49:57–71

    Article  CAS  Google Scholar 

  • Beutel MW, Harmon TC, Novotny TE, Mock J, Gilmore ME, Hart SC, Traina S, Duttagupta S, Brooks A, Jerde CL, Hoh E, Van De Werfhorst LC, Butsic V, Wartenberg AC, Holden PA (2021) A review of environmental pollution from the use and disposal of cigarettes and electronic cigarettes: contaminants, sources, and impacts. Sustainability 13:12994

    Article  CAS  Google Scholar 

  • Bishayee K, Khuda-Bukhsh AR (2013) 5-lipoxygenase antagonist therapy: a new approach towards targeted cancer chemotherapy. Acta Biochim Biophys Sin 45:709–719

    Article  CAS  Google Scholar 

  • Boleda MA, Galceran MA, Ventura F (2011) Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments. Environ Pollut 159:1584–1591

    Article  CAS  Google Scholar 

  • Borlado LR, Méndez J (2008) CDC6: from DNA replication to cell cycle checkpoints and oncogenesis. Carcinogenesis 29:237–243

    Article  CAS  Google Scholar 

  • Bose S, Banerjee S, Mondal A, Chakraborty U, Pumarol J, Croley CR, Bishayee A (2020) Targeting the JAK/STAT signaling pathway using phytocompounds for cancer prevention and therapy. Cells 9:1451

    Article  CAS  Google Scholar 

  • Bradham C, McClay DR (2006) p38 MAPK in development and cancer. Cell Cycle 5:824–828

    Article  CAS  Google Scholar 

  • Brandsch R (2006) Microbiology and biochemistry of nicotine degradation. Appl Microbiol Biotechnol 69:493–498

    Article  CAS  Google Scholar 

  • Bray F, Laversanne M, Weiderpass E, Soerjomataram I (2021) The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127:3029–3030

    Article  Google Scholar 

  • Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr (1999) Stat3 as an oncogene. Cell 98:295–303

    Article  CAS  Google Scholar 

  • Brown MT, Cooper JA (1996) Regulation, substrates and functions of src. Biochim Biophys Acta 1287:121–149

    Google Scholar 

  • Brown KC, Perry HE, Lau JK, Jones DV, Pulliam JF, Thornhill BA, Crabtree CM, Luo H, Chen YC, Dasgupta P (2013) Nicotine induces the up-regulation of the α7-nicotinic receptor (α7-nAChR) in human squamous cell lung cancer cells via the Sp1/GATA protein pathway. J Biol Chem 288:33049–33059

    Article  CAS  Google Scholar 

  • Bueno MJ, Uclés S, Hernando MD, Dávoli E, Fernández-Alba AR (2011) Evaluation of selected ubiquitous contaminants in the aquatic environment and their transformation products. A pilot study of their removal from a sewage treatment plant. Water Res 45:2331–2341

    Article  Google Scholar 

  • Buerge IJ, Kahle M, Buser HR, Müller MD, Poiger T (2008) Nicotine derivatives in wastewater and surface waters: application as chemical markers for domestic wastewater. Environ Sci Technol 42:6354–6360

    Article  CAS  Google Scholar 

  • Carlisle DL, Liu X, Hopkins TM, Swick MC, Dhir R, Siegfried JM (2007) Nicotine activates cell-signaling pathways through muscle-type and neuronal nicotinic acetylcholine receptors in non-small cell lung cancer cells. Pulm Pharmacol Ther 20:629–641

    Article  CAS  Google Scholar 

  • Carraway KL, Theodoropoulos G, Kozloski GA, Carothers Carraway CA (2009) Muc4/MUC4 functions and regulation in cancer. Future Oncol 5:1631–1640

    Article  CAS  Google Scholar 

  • Chaturvedi P, Singh AP, Moniaux N, Senapati S, Chakraborty S, Meza JL, Batra SK (2007) MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and invasive properties and interferes with its interaction to extracellular matrix proteins. Mol Cancer Res 5:309–320

    Article  CAS  Google Scholar 

  • Chen L, Wang H (2019a) Nicotine promotes human papillomavirus (HPV)-immortalized cervical epithelial cells (H8) proliferation by activating RPS27a-Mdm2-P53 pathway in vitro. Toxicol Sci 167:408–418

    Article  CAS  Google Scholar 

  • Chen L, Wang H (2019b) eIF4E is a critical regulator of human papillomavirus (HPV)-immortalized cervical epithelial (H8) cell growth induced by nicotine. Toxicology 419:1–10

    Article  CAS  Google Scholar 

  • Chen RJ, Ho YS, Guo HR, Wang YJ (2008) Rapid activation of Stat3 and ERK1/2 by nicotine modulates cell proliferation in human bladder cancer cells. Toxicol Sci 104:283–293

    Article  CAS  Google Scholar 

  • Chen RJ, Ho YS, Wu CH, Wang YJ (2011) Molecular mechanisms of nicotine-induced bladder cancer. J Exp Clin Med 3:252–256

    Article  CAS  Google Scholar 

  • Chen L, Fan J, Chen H, Meng Z, Chen Z, Wang P, Liu L (2014) The IL-8/CXCR1 axis is associated with cancer stem cell-like properties and correlates with clinical prognosis in human pancreatic cancer cases. Sci Rep 4:5911

    Article  CAS  Google Scholar 

  • Chen CY, Chen J, He L, Stiles BL (2018a) PTEN: tumor suppressor and metabolic regulator. Front Endocrinol 9:338

    Article  Google Scholar 

  • Chen PC, Lee WY, Ling HH, Cheng CH, Chen KC, Lin CW (2018b) Activation of fibroblasts by nicotine promotes the epithelial–mesenchymal transition and motility of breast cancer cells. J Cell Physiol 233:4972–4980

    Article  CAS  Google Scholar 

  • Chibaya L, Karim B, Zhang H, Jones SN (2021) Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proc Natl Acad Sci USA 118:e2003193118

    Article  CAS  Google Scholar 

  • Chipitsyna G, Gong Q, Anandanadesan R, Alnajar A, Batra SK, Wittel UA, Cullen DM, Akhter MP, Denhardt DT, Yeo CJ, Arafat HA (2009) Induction of osteopontin expression by nicotine and cigarette smoke in the pancreas and pancreatic ductal adenocarcinoma cells. Int J Cancer 125:276–285

    Article  CAS  Google Scholar 

  • Choi PM, Tscharke BJ, Donner E, O’Brien JW, Grant SC, Kaserzon SL, Mackie R, O’Malley E, Crosbie ND, Thomas KV, Mueller JF (2018) Wastewater-based epidemiology biomarkers: past, present and future. Trends Anal Chem 105:453–469

    Article  CAS  Google Scholar 

  • Chowdhury P, Udupa KB (2006) Nicotine as a mitogenic stimulus for pancreatic acinar cell proliferation. World J Gastroenterol 12:7428–7432

    Article  CAS  Google Scholar 

  • Cieślak M, Schmidt H, Twarowska-Schmidt K, Kamińska I (2017) Removal of nicotine from indoor air using titania-modified polypropylene fibers: nicotine decomposition by titania-modified polypropylene fibers. Int J Environ Sci Technol 14:1371–1382

    Article  Google Scholar 

  • Cragg GM, Pezzuto JM (2016) Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract 25(Suppl 2):41–59

    Article  Google Scholar 

  • Crowley-Weber CL, Dvorakova K, Crowley C, Bernstein H, Bernstein C, Garewal H, Payne CM (2003) Nicotine increases oxidative stress, activates NF-kappaB and GRP78, induces apoptosis and sensitizes cells to genotoxic/xenobiotic stresses by a multiple stress inducer, deoxycholate: relevance to colon carcinogenesis. Chem Biol Interact 145:53–66

    Article  CAS  Google Scholar 

  • Cucina A, Dinicola S, Coluccia P, Proietti S, D’Anselmi F, Pasqualato A, Bizzarri M (2012) Nicotine stimulates proliferation and inhibits apoptosis in colon cancer cell lines through activation of survival pathways. J Surg Res 178:233–241

    Article  CAS  Google Scholar 

  • Czyżykowski R, Połowinczak-Przybyłek J, Potemski P (2016) Nicotine-induced resistance of non-small cell lung cancer to treatment-possible mechanisms. Postepy Hig Med Dosw 70:186–193

    Article  Google Scholar 

  • Danaei G, Vander Hoorn S, Lopez AD, Murray CJ, Ezzati M (2005) Comparative Risk Assessment Collaborating Group (Cancers) Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet 366:1784–1793

    Article  Google Scholar 

  • Dang N, Meng X, Song H (2016) Nicotinic acetylcholine receptors and cancer. Biomed Rep 4:515–518

    Article  CAS  Google Scholar 

  • Dani JA (2015) Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. Int Rev Neurobiol 124:3–19

    Article  CAS  Google Scholar 

  • Dasgupta P, Sun J, Wang S, Fusaro G, Betts V, Padmanabhan J, Sebti SM, Chellappan SP (2004) Disruption of the Rb-Raf-1 interaction inhibits tumor growth and angiogenesis. Mol Cell Biol 24:9527–9541

    Article  CAS  Google Scholar 

  • Dasgupta P, Rastogi S, Pillai S, Ordonez-Ercan D, Morris M, Haura E, Chellappan S (2006) Nicotine induces cell proliferation by beta-arrestin-mediated activation of Src and Rb-Raf-1 pathways. J Clin Invest 116:2208–2217

    Article  CAS  Google Scholar 

  • Dass K, Ahmad A, Azmi AS, Sarkar SH, Sarkar FH (2008) Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev 34:122–136

    Article  CAS  Google Scholar 

  • Davies AM, Lara PN Jr, Mack PC, Gandara DR (2007) Incorporating bortezomib into the treatment of lung cancer. Clin Cancer Res 13:s4647–s4651

    Article  Google Scholar 

  • Davis RK, Chellappan S (2008) Disrupting the Rb-Raf-1 interaction: a potential therapeutic target for cancer. Drug News Perspect 21:331–335

    Article  CAS  Google Scholar 

  • Davis R, Rizwani W, Banerjee S, Kovacs M, Haura E, Coppola D, Chellappan S (2009) Nicotine promotes tumor growth and metastasis in mouse models of lung cancer. PLoS ONE 4:e7524

    Article  Google Scholar 

  • Deng X, Liu Z, Liu X, Fu Q, Deng T, Lu J, Liu Y, Liang Z, Jiang Q, Cheng C, Fang W (2018) miR-296-3p negatively regulated by nicotine stimulates cytoplasmic translocation of c-Myc via MK2 to suppress chemotherapy resistance. Mol Ther 26:1066–1081

    Article  CAS  Google Scholar 

  • Dinicola S, Masiello MG, Proietti S, Coluccia P, Fabrizi G, Catizone A, Ricci G, de Toma G, Bizzarri M, Cucina A (2018) Nicotine increases colon cancer cell migration and invasion through epithelial to mesenchymal transition (EMT): COX-2 involvement. J Cell Physiol 233:4935–4948

    Article  CAS  Google Scholar 

  • Dornan GL, Burke JE (2018) Molecular mechanisms of human disease mediated by oncogenic and primary immunodeficiency mutations in class IA phosphoinositide 3-kinases. Front Immunol 9:575

    Article  Google Scholar 

  • Dougherty MK, Müller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD, Conrads TP, Veenstra TD, Lu KP, Morrison DK (2005) Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell 17:215–224

    Article  CAS  Google Scholar 

  • Du X, Qi F, Lu S, Li Y, Han W (2018) Nicotine upregulates FGFR3 and RB1 expression and promotes non-small cell lung cancer cell proliferation and epithelial-to-mesenchymal transition via downregulation of miR-99b and miR-192. Biomed Pharmacother 101:656–662

    Article  CAS  Google Scholar 

  • Dufour M, Faes S, Dormond-Meuwly A, Demartines N, Dormond O (2014) PGE2-induced colon cancer growth is mediated by mTORC1. Biochem Biophys Res Commun 451:587–591

    Article  CAS  Google Scholar 

  • Ekman S, Wynes MW, Hirsch FR (2012) The mTOR pathway in lung cancer and implications for therapy and biomarker analysis. J Thorac Oncol 7:947–953

    Article  CAS  Google Scholar 

  • Enslen H, Lima-Fernandes E, Scott MG (2014) Arrestins as regulatory hubs in cancer signalling pathways. Handb Exp Pharmacol 219:405–425

    Article  CAS  Google Scholar 

  • Fang L, Teng H, Wang Y, Liao G, Weng L, Li Y, Wang X, Jin J, Jiao C, Chen L, Peng X, Chen J, Yang Y, Fang H, Han D, Li C, Jin X, Zhang S, Liu Z, Liu M, Wei Q, Liao L, Ge X, Zhao B, Zhou D, Qin HL, Zhou J, Wang P (2018) SET1A-mediated mono-methylation at K342 regulates YAP activation by blocking its nuclear export and promotes tumorigenesis. Cancer Cell 34:103-118.e9

    Article  CAS  Google Scholar 

  • Federovitch CM, Ron D, Hampton RY (2005) The dynamic ER: experimental approaches and current questions. Curr Opin Cell Biol 17:409–414

    Article  CAS  Google Scholar 

  • Feng S, Cao Z, Wang X (2013) Role of aryl hydrocarbon receptor in cancer. Biochim Biophys Acta 1836:197–210

    CAS  Google Scholar 

  • Feng L, Qi Q, Wang P, Chen H, Chen Z, Meng Z, Liu L (2018) Serum levels of IL-6, IL-8, and IL-10 are indicators of prognosis in pancreatic cancer. J Int Med Res 46:5228–5236

    Article  CAS  Google Scholar 

  • Freedman DA, Wu L, Levine AJ (1999) Functions of the MDM2 oncoprotein. Cell Mol Life Sci 55:96–107

    Article  CAS  Google Scholar 

  • Galmarini D, Galmarini CM, Galmarini FC (2012) Cancer chemotherapy: a critical analysis of its 60 years of history. Crit Rev Oncol Hematol 84:181–199

    Article  Google Scholar 

  • Ginsberg D (2002) E2F1 pathways to apoptosis. FEBS Lett 529:122–125

    Article  CAS  Google Scholar 

  • Ginzkey C, Stueber T, Friehs G, Koehler C, Hackenberg S, Richter E, Hagen R, Kleinsasser NH (2012) Analysis of nicotine-induced DNA damage in cells of the human respiratory tract. Toxicol Lett 208:23–29

    Article  CAS  Google Scholar 

  • Ginzkey C, Friehs G, Koehler C, Hackenberg S, Hagen R, Kleinsasser NH (2013) Assessment of nicotine–induced DNA damage in a genotoxicological test battery. Mutat Res 751:34–39

    Article  CAS  Google Scholar 

  • Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thürlimann B, Senn HJ (2013) Panel members Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer. Ann Oncol 24:2206–2223

    Article  CAS  Google Scholar 

  • Gong WY, Wu JF, Liu BJ, Zhang HY, Cao YX, Sun J, Lv YB, Wu X, Dong JC (2014) Flavonoid components in scutellaria baicalensis inhibit nicotine-induced proliferation, metastasis and lung cancer-associated inflammation in vitro. Int J Oncol 44:1561–1570

    Article  CAS  Google Scholar 

  • Grando SA (2014) Connections of nicotine to cancer. Nat Rev Cancer 14:419–429

    Article  CAS  Google Scholar 

  • Greer SN, Metcalf JL, Wang Y, Ohh M (2012) The updated biology of hypoxia-inducible factor. EMBO J 31:2448–2460

    Article  CAS  Google Scholar 

  • Guha P, Bandyopadhyaya G, Polumuri SK, Chumsri S, Gade P, Kalvakolanu DV, Ahmed H (2014) Nicotine promotes apoptosis resistance of breast cancer cells and enrichment of side population cells with cancer stem cell-like properties via a signaling cascade involving galectin-3, α9 nicotinic acetylcholine receptor and STAT3. Breast Cancer Res Treat 145:5–22

    Article  CAS  Google Scholar 

  • Guo J, Ibaragi S, Zhu T, Luo LY, Hu GF, Huppi PS, Chen CY (2008) Nicotine promotes mammary tumor migration via a signaling cascade involving protein kinase c and cdc42. Cancer Res 68:8473–8481

    Article  CAS  Google Scholar 

  • Guo J, Kim D, Gao J, Kurtyka C, Chen H, Yu C, Wu D, Mittal A, Beg AA, Chellappan SP, Haura EB, Cheng JQ (2013) IKBKE is induced by STAT3 and tobacco carcinogen and determines chemosensitivity in non-small cell lung cancer. Oncogene 32:151–159

    Article  CAS  Google Scholar 

  • Haluska F, Pemberton T, Ibrahim N, Kalinsky K (2007) The RTK/RAS/BRAF/PI3K pathways in melanoma: biology, small molecule inhibitors, and potential applications. Semin Oncol 34:546–554

    Article  CAS  Google Scholar 

  • Hanaki T, Horikoshi Y, Nakaso K, Nakasone M, Kitagawa Y, Amisaki M, Arai Y, Tokuyasu N, Sakamoto T, Honjo S, Saito H, Ikeguchi M, Yamashita K, Ohno S, Matsura T (2016) Nicotine enhances the malignant potential of human pancreatic cancer cells via activation of atypical protein kinase c. Biochim Biophys Acta 1860:2404–2415

    Article  CAS  Google Scholar 

  • Harada D, Takigawa N, Kiura K (2014) The role of STAT3 in non-small cell lung cancer. Cancers 6:708–722

    Article  CAS  Google Scholar 

  • Herman M, Tarran R (2020) E-cigarettes, nicotine, the lung and the brain: multi-level cascading pathophysiology. J Physiol 598:5063–5071

    Article  CAS  Google Scholar 

  • Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102

    Article  CAS  Google Scholar 

  • Hetz C, Axten JM, Patterson JB (2019) Pharmacological targeting of the unfolded protein response for disease intervention. Nat Chem Biol 15:764–775

    Article  CAS  Google Scholar 

  • Hirata N, Sekino Y, Kanda Y (2010) Nicotine increases cancer stem cell population in MCF-7 cells. Biochem Biophys Res Commun 403:138–143

    Article  CAS  Google Scholar 

  • Hoa NT, Van Ngoc LT, Vo QV (2023) Reactions of nicotine and the hydroxyl radical in the environment: theoretical insights into the mechanism, kinetics and products. Chemosphere 314:137682

    Article  CAS  Google Scholar 

  • Howitt J, Lackovic J, Low LH, Naguib A, Macintyre A, Goh CP, Callaway JK, Hammond V, Thomas T, Dixon M, Putz U, Silke J, Bartlett P, Yang B, Kumar S, Trotman LC, Tan SS (2012) Ndfip1 regulates nuclear PTEN import in vivo to promote neuronal survival following cerebral ischemia. J Cell Biol 196:29–36

    Article  CAS  Google Scholar 

  • Howitt J, Low LH, Putz U, Doan A, Lackovic J, Goh CP, Gunnersen J, Silke J, Tan SS (2015) Ndfip1 represses cell proliferation by controlling PTEN localization and signaling specificity. J Mol Cell Biol 7:119–131

    Article  CAS  Google Scholar 

  • Huang H (2018) Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances. Sensors 18:3249

    Article  Google Scholar 

  • Huang GW, Xue YJ, Wu ZY, Xu XE, Wu JY, Cao HH, Zhu Y, He JZ, Li CQ, Li EM, Xu LY (2018) A three-lncRNA signature predicts overall survival and disease-free survival in patients with esophageal squamous cell carcinoma. BMC Cancer 18:147

    Article  Google Scholar 

  • Hung CS, Peng YJ, Wei PL, Lee CH, Su HY, Ho YS, Lin SY, Wu CH, Chang YJ (2011) The alpha9 nicotinic acetylcholine receptor is the key mediator in nicotine-enhanced cancer metastasis in breast cancer cells. J Exp Clin Med 3:283–292

    Article  CAS  Google Scholar 

  • Ihle JN (1995) The Janus protein tyrosine kinase family and its role in cytokine signaling. Adv Immunol 60:1–35

    Article  CAS  Google Scholar 

  • Improgo MR, Tapper AR, Gardner PD (2011) Nicotinic acetylcholine receptor-mediated mechanisms in lung cancer. Biochem Pharmacol 82:1015–1021

    Article  CAS  Google Scholar 

  • Isakov N (2018) Protein kinase c (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin Cancer Biol 48:36–52

    Article  CAS  Google Scholar 

  • Ishiguro H, Kimura M, Takeyama H (2014) Role of microRNAs in gastric cancer. World J Gastroenterol 20:5694–5699

    Article  CAS  Google Scholar 

  • Iwakuma T, Lozano G (2003) MDM2, an introduction. Mol Cancer Res 1:993–1000

    CAS  Google Scholar 

  • Jafari M, Ghadami E, Dadkhah T, Akhavan-Niaki H (2019) PI3k/AKT signaling pathway: erythropoiesis and beyond. J Cell Physiol 234:2373–2385

    Article  CAS  Google Scholar 

  • Jain S, Chakraborty G, Bulbule A, Kaur R, Kundu GC (2007) Osteopontin: an emerging therapeutic target for anticancer therapy. Expert Opin Ther Targets 11:81–90

    Article  CAS  Google Scholar 

  • Janga SC, Vallabhaneni S (2011) MicroRNAs as post-transcriptional machines and their interplay with cellular networks. Adv Exp Med Biol 722:59–74

    Article  CAS  Google Scholar 

  • Jarnicki A, Putoczki T, Ernst M (2010) Stat3: linking inflammation to epithelial cancer—More than a “gut” feeling? Cell Div 5:14

    Article  Google Scholar 

  • Jassem J (2019) Tobacco smoking after diagnosis of cancer: clinical aspects. Transl Lung Cancer Res 8:S50–S58

    Article  Google Scholar 

  • Jensen K, Afroze S, Munshi MK, Guerrier M, Glaser SS (2012) Mechanisms for nicotine in the development and progression of gastrointestinal cancers. Transl Gastrointest Cancer 1:81–87

    CAS  Google Scholar 

  • Jia Y, Sun H, Wu H, Zhang H, Zhang X, Xiao D, Ma X, Wang Y (2016) Nicotine inhibits cisplatin-induced apoptosis via regulating α5-nAChR/AKT signaling in human gastric cancer cells. PLoS ONE 11:e0149120

    Article  Google Scholar 

  • Jin C, Wang K, Oppong-Gyebi A, Hu J (2020) Application of nanotechnology in cancer diagnosis and therapy—a mini-review. Int J Med Sci 17:2964–2973

    Article  CAS  Google Scholar 

  • Johansen C, Vestergaard C, Kragballe K, Kollias G, Gaestel M, Iversen L (2009) MK2 regulates the early stages of skin tumor promotion. Carcinogenesis 30:2100–2108

    Article  CAS  Google Scholar 

  • John A, Tuszynski G (2001) The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 7:14–23

    Article  CAS  Google Scholar 

  • Johnson M (1998) The beta-adrenoceptor. Am J Respir Crit Care Med 158:S146–S153

    Article  CAS  Google Scholar 

  • Karin M, Zg L, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246

    Article  CAS  Google Scholar 

  • Karpisheh V, Nikkhoo A, Hojjat-Farsangi M, Namdar A, Azizi G, Ghalamfarsa G, Sabz G, Yousefi M, Yousefi B, Jadidi-Niaragh F (2019) Prostaglandin E2 as a potent therapeutic target for treatment of colon cancer. Prostaglandins Other Lipid Mediat 144:106338

    Article  CAS  Google Scholar 

  • Katz LH, Li Y, Chen JS, Muñoz NM, Majumdar A, Chen J, Mishra L (2013) Targeting TGF-β signaling in cancer. Expert Opin Ther Targets 17:743–760

    Article  CAS  Google Scholar 

  • Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70:1469–1480

    Article  CAS  Google Scholar 

  • Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, Sabel MS, Livant D, Weiss SJ, Rubin MA, Chinnaiyan AM (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 100:11606–11611

    Article  CAS  Google Scholar 

  • Knowles MA, Platt FM, Ross RL, Hurst CD (2009) Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer Metastasis Rev 28:305–316

    Article  CAS  Google Scholar 

  • Koehne CH, Dubois RN (2004) COX-2 inhibition and colorectal cancer. Semin Oncol 31:12–21

    Article  CAS  Google Scholar 

  • Koivunen J, Aaltonen V, Peltonen J (2006) Protein kinase c (PKC) family in cancer progression. Cancer Lett 235:1–10

    Article  CAS  Google Scholar 

  • Kollmann K, Heller G, Schneckenleithner C, Warsch W, Scheicher R, Ott RG, Schäfer M, Fajmann S, Schlederer M, Schiefer AI, Reichart U, Mayerhofer M, Hoeller C, Zöchbauer-Müller S, Kerjaschki D, Bock C, Kenner L, Hoefler G, Freissmuth M, Green AR, Moriggl R, Busslinger M, Malumbres M, Sexl V (2013) A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell 24:167–181

    Article  CAS  Google Scholar 

  • Kong YG, Cui M, Chen SM, Xu Y, Xu Y, Tao ZZ (2018) LncRNA-LINC00460 facilitates nasopharyngeal carcinoma tumorigenesis through sponging miR-149-5p to up-regulate IL6. Gene 639:77–84

    Article  CAS  Google Scholar 

  • Kontomanolis EN, Kalagasidou S, Pouliliou S, Anthoulaki X, Georgiou N, Papamanolis V, Fasoulakis ZN (2018) The notch pathway in breast cancer progression. Sci World J 2018:2415489

    Article  Google Scholar 

  • Kumari K, Das B, Adhya A, Chaudhary S, Senapati S, Mishra SK (2018) Nicotine associated breast cancer in smokers is mediated through high level of EZH2 expression which can be reversed by methyltransferase inhibitor DZNepA. Cell Death Dis 9:152

    Article  Google Scholar 

  • Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594

    Article  CAS  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  Google Scholar 

  • Leber MF, Efferth T (2009) Molecular principles of cancer invasion and metastasis (review). Int J Oncol 34:881–895

    CAS  Google Scholar 

  • Lee J, Cooke JP (2012) Nicotine and pathological angiogenesis. Life Sci 91:1058–1064

    Article  CAS  Google Scholar 

  • Lee H, Hwang SJ, Kim HR, Shin CH, Choi KH, Joung JG, Kim HH (2016) Neurofibromatosis 2 (NF2) controls the invasiveness of glioblastoma through YAP-dependent expression of CYR61/CCN1 and miR-296-3p. Biochim Biophys Acta 1859:599–611

    Article  CAS  Google Scholar 

  • Lee JB, Pyo KH, Kim HR (2021) Role and function of O-GlcNAcylation in cancer. Cancers 13:5365

    Article  CAS  Google Scholar 

  • Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, Zhao S, Xiong Y, Guan KL (2008) TAZ promotes cell proliferation and epithelial–mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 28:2426–2436

    Article  CAS  Google Scholar 

  • Lei Z, Yang X, He H, Jian C, Xu X (2019) Nicotine downregulates microRNA-200c to promote metastasis and the epithelial–mesenchymal transition in human colorectal cancer cells. J Cell Physiol 234:1369–1379

    Article  CAS  Google Scholar 

  • Li J, Shan F, Xiong G, Chen X, Guan X, Wang JM, Wang WL, Xu X, Bai Y (2014) EGF-induced C/EBPβ participates in EMT by decreasing the expression of miR-203 in esophageal squamous cell carcinoma cells. J Cell Sci 127:3735–3744

    CAS  Google Scholar 

  • Li H, Li J, Shi B, Chen F (2017) MicroRNA-296 targets AKT2 in pancreatic cancer and functions as a potential tumor suppressor. Mol Med Rep 16:466–472

    Article  CAS  Google Scholar 

  • Li CL, Lin YK, Chen HA, Huang CY, Huang MT, Chang YJ (2019) Smoking as an independent risk factor for hepatocellular carcinoma due to the α7-nachr modulating the JAK2/STAT3 signaling axis. J Clin Med 8:1391

    Article  CAS  Google Scholar 

  • Li S, Khoi PN, Yin H, Sah DK, Kim NH, Lian S, Jung YD (2022) Sulforaphane suppresses the nicotine-induced expression of the matrix metalloproteinase-9 via inhibiting ROS-mediated AP-1 and NF-κB signaling in human gastric cancer cells. Int J Mol Sci 23:5172

    Article  CAS  Google Scholar 

  • Lian L, Yan S, Yao B, Chan SA, Song W (2017) Photochemical transformation of nicotine in wastewater effluent. Environ Sci Technol 51:11718–11730

    Article  CAS  Google Scholar 

  • Lian S, Li S, Zhu J, Xia Y, Do Jung Y (2022) Nicotine stimulates IL-8 expression via ROS/NF-κB and ROS/MAPK/AP-1 axis in human gastric cancer cells. Toxicology 466:153062

    Article  CAS  Google Scholar 

  • Lien YC, Wang W, Kuo LJ, Liu JJ, Wei PL, Ho YS, Ting WC, Wu CH, Chang YJ (2011) Nicotine promotes cell migration through alpha7 nicotinic acetylcholine receptor in gastric cancer cells. Ann Surg Oncol 18:2671–2679

    Article  Google Scholar 

  • Liu Y, Liu BA (2011) Enhanced proliferation, invasion, and epithelial–mesenchymal transition of nicotine-promoted gastric cancer by periostin. World J Gastroenterol 17:2674–2680

    Article  CAS  Google Scholar 

  • Liu J, Ma G, Chen T, Hou Y, Yang S, Zhang KQ, Yang J (2015) Nicotine-degrading microorganisms and their potential applications. Appl Microbiol Biotechnol 99:3775–3785

    Article  CAS  Google Scholar 

  • Lozano A, Martínez-Uroz MA, Gómez-Ramos MJ, Gómez-Ramos MM, Mezcua M, Fernández-Alba AR (2012) Determination of nicotine in mushrooms by various GC/MS-and LC/MS-based methods. Anal Bioanal Chem 402:935–943

    Article  CAS  Google Scholar 

  • Lu Y, Yu Q, Liu JH, Zhang J, Wang H, Koul D, McMurray JS, Fang X, Yung WK, Siminovitch KA, Mills GB (2003) Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J Biol Chem 278:40057–40066

    Article  CAS  Google Scholar 

  • Luo W, Lin Y, Meng S, Guo Y, Zhang J, Zhang W (2016) miRNA-296-3p modulates chemosensitivity of lung cancer cells by targeting CX3CR1. Am J Transl Res 8:1848–1856

    CAS  Google Scholar 

  • Ma X, Jia Y, Zu S, Li R, Jia Y, Zhao Y, Xiao D, Dang N, Wang Y (2014) α5 Nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer. Toxicol Appl Pharmacol 278:172–179

    Article  CAS  Google Scholar 

  • Ma J, Matkar S, He X, Hua X (2018) FOXO family in regulating cancer and metabolism. Semin Cancer Biol 50:32–41

    Article  CAS  Google Scholar 

  • Machado-Silva A, Perrier S, Bourdon JC (2010) P53 family members in cancer diagnosis and treatment. Semin Cancer Biol 20:57–62

    Article  CAS  Google Scholar 

  • Mackuľak T, Birošová L, Grabic R, Škubák J, Bodík I (2015) National monitoring of nicotine use in Czech and Slovak Republic based on wastewater analysis. Environ Sci Pollut Res Int 22:14000–14006

    Article  Google Scholar 

  • Makhlin I, Zhang J, Long CJ, Devarajan K, Zhou Y, Klein-Szanto AJ, Huang M, Chernoff J, Boorjian SA (2011) The mTOR pathway affects proliferation and chemosensitivity of urothelial carcinoma cells and is upregulated in a subset of human bladder cancers. BJU Int 108:E84-90

    Article  Google Scholar 

  • Mamane Y, Petroulakis E, Rong L, Yoshida K, Ler LW, Sonenberg N (2004) eIF4E-from translation to transformation. Oncogene 23:3172–3179

    Article  CAS  Google Scholar 

  • Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169:381–405

    Article  CAS  Google Scholar 

  • Masoner JR, Kolpin DW, Furlong ET, Cozzarelli IM, Gray JL, Schwab EA (2014) Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States. Environ Sci Process Impacts 16:2335–2354

    Article  CAS  Google Scholar 

  • Mathur RS, Mathur SP, Young RC (2000) Up-regulation of epidermal growth factor-receptors (EGF-R) by nicotine in cervical cancer cell lines: this effect may be mediated by EGF. Am J Reprod Immunol 44:114–120

    Article  CAS  Google Scholar 

  • Matsumura I, Tanaka H, Kanakura Y (2003) E2F1 and c-Myc in cell growth and death. Cell Cycle 2:333–338

    Article  CAS  Google Scholar 

  • Matt GE, Quintana PJE, Hoh E, Zakarian JM, Dodder NG, Record RA, Hovell MF, Mahabee-Gittens EM, Padilla S, Markman L, Watanabe K, Novotny TE (2021) Remediating thirdhand smoke pollution in multiunit housing: temporary reductions and the challenges of persistent reservoirs. Nicotine Tob Res 23:364–372

    Article  CAS  Google Scholar 

  • Matt GE, Quintana PJE, Zakarian JM, Hoh E, Hovell MF, Mahabee-Gittens M, Watanabe K, Datuin K, Vue C, Chatfield DA (2016) When smokers quit: exposure to nicotine and carcinogens persists from thirdhand smoke pollution. Tob Control 26:548–556

    Article  Google Scholar 

  • Matthews CP, Colburn NH, Young MR (2007) AP-1 a target for cancer prevention. Curr Cancer Drug Targets 7:317–324

    Article  CAS  Google Scholar 

  • Mattiuzzi C, Lippi G (2019) Current cancer epidemiology. J Epidemiol Glob Health 9:217–222

    Article  Google Scholar 

  • McInroy L, Määttä A (2007) Down-regulation of vimentin expression inhibits carcinoma cell migration and adhesion. Biochem Biophys Res Commun 360:109–114

    Article  CAS  Google Scholar 

  • Meger M, Meger-Kossien I, Schuler-Metz A, Janket D, Scherer G (2002) Simultaneous determination of nicotine and eight nicotine metabolites in urine of smokers using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 778:251–261

    Article  CAS  Google Scholar 

  • Memmott RM, Dennis PA (2010) The role of the Akt/mTOR pathway in tobacco carcinogen-induced lung tumorigenesis. Clin Cancer Res 16:4–10

    Article  CAS  Google Scholar 

  • Merchant N, Nagaraju GP, Rajitha B, Lammata S, Jella KK, Buchwald ZS, Lakka SS, Ali AN (2017) Matrix metalloproteinases: their functional role in lung cancer. Carcinogenesis 38:766–780

    Article  CAS  Google Scholar 

  • Mohrherr J, Uras IZ, Moll HP, Casanova E (2020) STAT3: versatile functions in non-small cell lung cancer. Cancers 12:1107

    Article  CAS  Google Scholar 

  • Momi N, Ponnusamy MP, Kaur S, Rachagani S, Kunigal SS, Chellappan S, Ouellette MM, Batra SK (2013) Nicotine/cigarette smoke promotes metastasis of pancreatic cancer through α7nAChR-mediated MUC4 upregulation. Oncogene 32:1384–1395

    Article  CAS  Google Scholar 

  • Mondal S, Adhikari N, Banerjee S, Amin SA, Jha T (2020) Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: a minireview. Eur J Med Chem 194:112260

    Article  CAS  Google Scholar 

  • Moon RT (2005) Wnt/β-catenin pathway. Sci STKE 2005:cm1

  • Morita I (2002) Distinct functions of COX-1 and COX-2. Prostaglandins Other Lipid Mediat 68–69:165–175

    Article  Google Scholar 

  • Morrison DK, Cutler RE (1997) The complexity of Raf-1 regulation. Curr Opin Cell Biol 9:174–179

    Article  CAS  Google Scholar 

  • Nakanishi M, Rosenberg DW (2013) Multifaceted roles of PGE2 in inflammation and cancer. Semin Immunopathol 35:123–137

    Article  CAS  Google Scholar 

  • Nanki N, Fujita J, Yang Y, Hojo S, Bandoh S, Yamaji Y, Ishida T (2001) Expression of oncofetal fibronectin and syndecan-1 mRNA in 18 human lung cancer cell lines. Tumour Biol 22:390–396

    Article  CAS  Google Scholar 

  • Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB (1986) Arachidonic acid metabolism. Annu Rev Biochem 55:69–102

    Article  CAS  Google Scholar 

  • Neri F, Zippo A, Krepelova A, Cherubini A, Rocchigiani M, Oliviero S (2012) Myc regulates the transcription of the PRC2 gene to control the expression of developmental genes in embryonic stem cells. Mol Cell Biol 32:840–851

    Article  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  Google Scholar 

  • Nieh S, Jao SW, Yang CY, Lin YS, Tseng YH, Liu CL, Lee TY, Liu TY, Chu YH, Chen SF (2015) Regulation of tumor progression via the Snail-RKIP signaling pathway by nicotine exposure in head and neck squamous cell carcinoma. Head Neck 37:1712–1721

    Article  Google Scholar 

  • Nishioka T, Kim HS, Luo LY, Huang Y, Guo J, Chen CY (2011) Sensitization of epithelial growth factor receptors by nicotine exposure to promote breast cancer cell growth. Breast Cancer Res 13:R113

    Article  CAS  Google Scholar 

  • Nishioka T, Tada H, Ibaragi S, Chen C, Sasano T (2019) Nicotine exposure induces the proliferation of oral cancer cells through the α7 subunit of the nicotinic acetylcholine receptor. Biochem Biophys Res Commun 509:514–520

    Article  CAS  Google Scholar 

  • Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16

    Article  CAS  Google Scholar 

  • Northrup TF, Khan AM, Jacob P 3rd, Benowitz NL, Hoh E, Hovell MF, Matt GE, Stotts AL (2016) Thirdhand smoke contamination in hospital settings: assessing exposure risk for vulnerable paediatric patients. Tob Control 25:619–623

    Article  Google Scholar 

  • Novotny TE, Zhao F (1999) Consumption and production waste: another externality of tobacco use. Tob Control 8:75–80

    Article  CAS  Google Scholar 

  • Nygren P (2001) What is cancer chemotherapy? Acta Oncol 40:166–174

    Article  CAS  Google Scholar 

  • Osborn M, Weber K (1983) Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab Invest 48:372–394

    CAS  Google Scholar 

  • Parker PJ, Murray-Rust J (2004) PKC at a glance. J Cell Sci 117:131–132

    Article  CAS  Google Scholar 

  • Passananti M, Temussi F, Iesce MR, Previtera L, Mailhot G, Vione D, Brigante M (2014) Photoenhanced transformation of nicotine in aquatic environments: involvement of naturally occurring radical sources. Water Res 55:106–114

    Article  CAS  Google Scholar 

  • Paterson AJ, Kudlow JE (1995) Regulation of glutamine: fructose-6-phosphate amidotransferase gene transcription by epidermal growth factor and glucose. Endocrinology 136:2809–2816

    Article  CAS  Google Scholar 

  • Peterson YK, Luttrell LM (2017) The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol Rev 69:256–297

    Article  CAS  Google Scholar 

  • Piotrowska-Cyplik A, Olejnik A, Cyplik P, Dach J, Czarnecki Z (2009) The kinetics of nicotine degradation, enzyme activities and genotoxic potential in the characterization of tobacco waste composting. Bioresour Technol 100:5037–5044

    Article  CAS  Google Scholar 

  • Plotkin LI, Wallace JM (2021) MicroRNAs and osteocytes. Bone 150:115994

    Article  CAS  Google Scholar 

  • Poulsen J, Nielsen KA, Bauer-Brandl A (2022) Raman imaging as a powerful tool to elucidate chemical processes in a matrix: medicated chewing gums with nicotine. J Pharm Biomed Anal 209:114519

    Article  CAS  Google Scholar 

  • Prochaska JJ, Benowitz NL (2019) Current advances in research in treatment and recovery: nicotine addiction. Sci Adv 5:eaay9763

    Article  CAS  Google Scholar 

  • Pulido R, Baker SJ, Barata JT, Carracedo A, Cid VJ, Chin-Sang ID, Davé V, den Hertog J, Devreotes P, Eickholt BJ, Eng C, Furnari FB, Georgescu MM, Gericke A, Hopkins B, Jiang X, Lee SR, Lösche M, Malaney P, Matias-Guiu X, Molina M, Pandolfi PP, Parsons R, Pinton P, Rivas C, Rocha RM, Rodríguez MS, Ross AH, Serrano M, Stambolic V, Stiles B, Suzuki A, Tan SS, Tonks NK, Trotman LC, Wolff N, Woscholski R, Wu H, Leslie NR (2014) A unified nomenclature and amino acid numbering for human PTEN. Sci Signal 7:pe15

  • Qadir MI, Parveen A, Ali M (2015) Cdc42: role in cancer management. Chem Biol Drug Des 86:432–439

    Article  CAS  Google Scholar 

  • Qin X, Jiang B, Zhang Y (2016) 4E-BP1, a multifactor regulated multifunctional protein. Cell Cycle 15:781–786

    Article  CAS  Google Scholar 

  • Rane SG, Reddy EP (2000) Janus kinases: components of multiple signaling pathways. Oncogene 19:5662–5679

    Article  CAS  Google Scholar 

  • Ray AL, Castillo EF, Morris KT, Nofchissey RA, Weston LL, Samedi VG, Hanson JA, Gaestel M, Pinchuk IV, Beswick EJ (2016) Blockade of MK2 is protective in inflammation-associated colorectal cancer development. Int J Cancer 138:770–775

    Article  CAS  Google Scholar 

  • Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase c. Physiol Rev 80:1291–1335

    Article  CAS  Google Scholar 

  • Reddy SS, Shaik HA (2008) Estimation of nicotine content in popular Indian brands of smoking and chewing tobacco products. Indian J Dent Res 19:88–91

    Article  Google Scholar 

  • Rezatabar S, Karimian A, Rameshknia V, Parsian H, Majidinia M, Kopi TA, Bishayee A, Sadeghinia A, Yousefi M, Monirialamdari M, Yousefi B (2019) RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J Cell Physiol 234:14951–14965

    Article  CAS  Google Scholar 

  • Richardson RM, Ali H, Pridgen BC, Haribabu B, Snyderman R (1998) Multiple signaling pathways of human interleukin-8 receptor A. Independent regulation by phosphorylation. J Biol Chem 273:10690–10695

    Article  CAS  Google Scholar 

  • Roskoski R Jr (2012) MEK1/2 dual-specificity protein kinases: structure and regulation. Biochem Biophys Res Commun 417:5–10

    Article  CAS  Google Scholar 

  • Rothschild SI, Tschan MP, Federzoni EA, Jaggi R, Fey MF, Gugger M, Gautschi O (2012) MicroRNA-29b is involved in the Src-ID1 signaling pathway and is dysregulated in human lung adenocarcinoma. Oncogene 31:4221–4232

    Article  CAS  Google Scholar 

  • Saleem K, Wani WA, Haque A, Lone MN, Hsieh MF, Jairajpuri MA, Ali I (2013) Synthesis, DNA binding, hemolysis assays and anticancer studies of copper(II), nickel(II) and iron(III) complexes of a pyrazoline-based ligand. Future Med Chem 5:135–146

    Article  CAS  Google Scholar 

  • Saline M, Badertscher L, Wolter M, Lau R, Gunnarsson A, Jacso T, Norris T, Ottmann C, Snijder A (2019) AMPK and AKT protein kinases hierarchically phosphorylate the N-terminus of the FOXO1 transcription factor, modulating interactions with 14-3-3 proteins. J Biol Chem 294:13106–13116

    Article  CAS  Google Scholar 

  • Sanner T, Grimsrud TK (2015) Nicotine: carcinogenicity and effects on response to cancer treatment-a review. Front Oncol 5:196

    Article  Google Scholar 

  • Satelli A, Li S (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 68:3033–3046

    Article  CAS  Google Scholar 

  • Schaal C, Chellappan SP (2014) Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers. Mol Cancer Res 12:14–23

    Article  CAS  Google Scholar 

  • Schaal C, Padmanabhan J, Chellappan S (2015) The role of nAChR and calcium signaling in pancreatic cancer initiation and progression. Cancers 7:1447–1471

    Article  CAS  Google Scholar 

  • Sciacchitano S, Lavra L, Morgante A, Ulivieri A, Magi F, De Francesco GP, Bellotti C, Salehi LB, Ricci A (2018) Galectin-3: one molecule for an alphabet of diseases, from A to Z. Int J Mol Sci 19:379

    Article  Google Scholar 

  • Seckar JA, Stavanja MS, Harp PR, Yi Y, Garner CD, Doi J (2008) Environmental fate and effects of nicotine released during cigarette production. Environ Toxicol Chem 27:1505–1514

    Article  CAS  Google Scholar 

  • Selmar D, Radwan A, Abdalla N, Taha H, Wittke C, El-Henawy A, Alshaal T, Amer M, Kleinwächter M, Nowak M, El-Ramady H (2018) Uptake of nicotine from discarded cigarette butts-A so far unconsidered path of contamination of plant-derived commodities. Environ Pollut 238:972–976

    Article  CAS  Google Scholar 

  • Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK (2012) Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 16:15–31

    Article  CAS  Google Scholar 

  • Shen T, Huang S (2012) The role of cdc25A in the regulation of cell proliferation and apoptosis. Anticancer Agents Med Chem 12:631–639

    Article  CAS  Google Scholar 

  • Shi D, Guo W, Chen W, Fu L, Wang J, Tian Y, Xiao X, Kang T, Huang W, Deng W (2012) Nicotine promotes proliferation of human nasopharyngeal carcinoma cells by regulating α7AChR, ERK, HIF-1α and VEGF/PEDF signaling. PLoS ONE 7:e43898

    Article  CAS  Google Scholar 

  • Shimizu R, Ibaragi S, Eguchi T, Kuwajima D, Kodama S, Nishioka T, Okui T, Obata K, Takabatake K, Kawai H, Ono K, Okamoto K, Nagatsuka H, Sasaki A (2019) Nicotine promotes lymph node metastasis and cetuximab resistance in head and neck squamous cell carcinoma. Int J Oncol 54:283–294

    CAS  Google Scholar 

  • Shin VY, Wu WK, Ye YN, So WH, Koo MW, Liu ES, Luo JC, Cho CH (2004) Nicotine promotes gastric tumor growth and neovascularization by activating extracellular signal-regulated kinase and cyclooxygenase-2. Carcinogenesis 25:2487–2495

    Article  CAS  Google Scholar 

  • Shin VY, Wu WK, Chu KM, Wong HP, Lam EK, Tai EK, Koo MW, Cho CH (2005) Nicotine induces cyclooxygenase-2 and vascular endothelial growth factor receptor-2 in association with tumor-associated invasion and angiogenesis in gastric cancer. Mol Cancer Res 3:607–615

    Article  CAS  Google Scholar 

  • Shin VY, Wu WK, Chu KM, Koo MW, Wong HP, Lam EK, Tai EK, Cho CH (2007) Functional role of beta-adrenergic receptors in the mitogenic action of nicotine on gastric cancer cells. Toxicol Sci 96:21–29

    Article  CAS  Google Scholar 

  • Shin VY, Jin HC, Ng EK, Yu J, Leung WK, Cho CH, Sung JJ (2008) Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: involvement of nicotinic acetylcholine receptor (nAChR) and beta-adrenergic receptor signaling pathways. Toxicol Appl Pharmacol 233:254–261

    Article  CAS  Google Scholar 

  • Shin VY, Jin HC, Ng EK, Sung JJ, Chu KM, Cho CH (2010) Activation of 5-lipoxygenase is required for nicotine mediated epithelial–mesenchymal transition and tumor cell growth. Cancer Lett 292:237–245

    Article  CAS  Google Scholar 

  • Siegmund B, Leitner E, Pfannhauser W (1999) Determination of the nicotine content of various edible nightshades (Solanaceae) and their products and estimation of the associated dietary nicotine intake. J Agric Food Chem 47:3113–3120

    Article  CAS  Google Scholar 

  • Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, Murphy MP, Yamamoto M, Winterbourn C (2022) Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol 23:499–515

    Article  CAS  Google Scholar 

  • Singh JP, Zhang K, Wu J, Yang X (2015) O-GlcNAc signaling in cancer metabolism and epigenetics. Cancer Lett 356:244–250

    Article  CAS  Google Scholar 

  • Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, Tan BK, Sethi G, Bishayee A (2014) Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta 1845:136–154

    CAS  Google Scholar 

  • Song L, Tang JW, Owusu L, Sun MZ, Wu J, Zhang J (2014) Galectin-3 in cancer. Clin Chim Acta 431:185–191

    Article  CAS  Google Scholar 

  • Soumaoro LT, Iida S, Uetake H, Ishiguro M, Takagi Y, Higuchi T, Yasuno M, Enomoto M, Sugihara K (2006) Expression of 5-lipoxygenase in human colorectal cancer. World J Gastroenterol 12:6355–6360

    Article  CAS  Google Scholar 

  • Spano JP, Milano G, Rixe C, Fagard R (2006) JAK/STAT signalling pathway in colorectal cancer: a new biological target with therapeutic implications. Eur J Cancer 42:2668–2670

    Article  CAS  Google Scholar 

  • Su Z, Yang H, Zhao M, Wang Y, Deng G, Chen R (2017) MicroRNA-92a promotes cell proliferation in cervical cancer via inhibiting p21 expression and promoting cell cycle progression. Oncol Res 25:137–145

    Article  Google Scholar 

  • Suk M, Kümmerer K (2023) Towards greener and sustainable ionic liquids using naturally occurring and nature-inspired pyridinium structures. Green Chem 25:365–374

    Article  CAS  Google Scholar 

  • Summy JM, Gallick GE (2003) Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 22:337–358

    Article  CAS  Google Scholar 

  • Sun HJ, Jia YF, Ma XL (2017) Alpha5 nicotinic acetylcholine receptor contributes to nicotine-induced lung cancer development and progression. Front Pharmacol 8:573

    Article  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  Google Scholar 

  • Szulzewsky F, Holland EC, Vasioukhin V (2021) YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Dev Biol 475:205–221

    Article  CAS  Google Scholar 

  • Thomas SJ, Snowden JA, Zeidler MP, Danson SJ (2015) The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br J Cancer 113:365–371

    Article  CAS  Google Scholar 

  • Tomar SL, Henningfield JE (1997) Review of the evidence that pH is a determinant of nicotine dosage from oral use of smokeless tobacco. Tob Control 6:219–225

    Article  CAS  Google Scholar 

  • Treviño JG, Pillai S, Kunigal S, Singh S, Fulp WJ, Centeno BA, Chellappan SP (2012) Nicotine induces inhibitor of differentiation-1 in a Src-dependent pathway promoting metastasis and chemoresistance in pancreatic adenocarcinoma. Neoplasia 14:1102–1114

    Article  Google Scholar 

  • Tsurutani J, Castillo SS, Brognard J, Granville CA, Zhang C, Gills JJ, Sayyah J, Dennis PA (2005) Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells. Carcinogenesis 26:1182–1195

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (1995) Toxics release inventory program. Washington, DC

  • Underwood PW, Zhang DY, Cameron ME, Gerber MH, Delitto D, Maduka MU, Cooper KJ, Han S, Hughes SJ, Judge SM, Judge AR, Trevino JG (2020) Nicotine induces IL-8 secretion from pancreatic cancer stroma and worsens cancer-induced cachexia. Cancers 12:329

    Article  CAS  Google Scholar 

  • Ung TT, Nguyen TT, Li S, Han JY, Jung YD (2021) Nicotine stimulates CYP1A1 expression in human hepatocellular carcinoma cells via AP-1, NF-kB, and AhR. Toxicol Lett 349:155–164

    Article  CAS  Google Scholar 

  • VanderVorst K, Dreyer CA, Konopelski SE, Lee H, Ho HH, Carraway KL 3rd (2019) Wnt/PCP signaling contribution to carcinoma collective cell migration and metastasis. Cancer Res 79:1719–1729

    Article  CAS  Google Scholar 

  • Verma A, Kambhampati S, Parmar S, Platanias LC (2003) Jak family of kinases in cancer. Cancer Metastasis Rev 22:423–434

    Article  CAS  Google Scholar 

  • Verovšek T, Heath D, Heath E (2022) Occurrence, fate and determination of tobacco (nicotine) and alcohol (ethanol) residues in waste- and environmental waters. Trends Environ Anal Chem 34:e00164

    Article  Google Scholar 

  • Vineis P, Wild CP (2014) Global cancer patterns: causes and prevention. Lancet 383:549–557

    Article  Google Scholar 

  • Wang S, Pang T, Gao M, Kang H, Ding W, Sun X, Zhao Y, Zhu W, Tang X, Yao Y, Hu X (2013a) HPV E6 induces eIF4E transcription to promote the proliferation and migration of cervical cancer. FEBS Lett 587:690–697

    Article  CAS  Google Scholar 

  • Wang Y, Shi J, Chai K, Ying X, Zhou BP (2013b) The role of snail in EMT and tumorigenesis. Curr Cancer Drug Targets 13:963–972

    Article  CAS  Google Scholar 

  • Wang H, Yu J, Zhang L, Xiong Y, Chen S, Xing H, Tian Z, Tang K, Wei H, Rao Q, Wang M, Wang J (2014a) RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. Biochem Biophys Res Commun 446:1204–1210

    Article  CAS  Google Scholar 

  • Wang J, Pareja KA, Kaiser CA, Sevier CS (2014b) Redox signaling via the molecular chaperone BiP protects cells against endoplasmic reticulum-derived oxidative stress. Elife 3:e03496

    Article  Google Scholar 

  • Wang C, Gu W, Zhang Y, Ji Y, Wen Y, Xu X (2017a) Nicotine promotes cervical carcinoma cell line HeLa migration and invasion by activating PI3k/Akt/NF-kB pathway in vitro. Exp Toxicol Pathol 69:402–407

    Article  Google Scholar 

  • Wang C, Xu X, Jin H, Liu G (2017b) Nicotine may promote tongue squamous cell carcinoma progression by activating the Wnt/β-catenin and Wnt/PCP signaling pathways. Oncol Lett 13:3479–3486

    Article  CAS  Google Scholar 

  • Wang H, Chen L, Zhou T, Zhang Z, Zeng C (2020) Nicotine promotes WRL68 cells proliferation due to the mutant p53 gain-of-function by activating CDK6-p53-RS-PIN1-STAT1 signaling pathway. Chem Res Toxicol 33:2361–2373

    Article  CAS  Google Scholar 

  • Wang H, Chen L, Zhou T, Zhang Z, Zeng C (2021a) P53 mutation at serine 249 and its gain of function are highly related to hepatocellular carcinoma after smoking exposure. Public Health Genomics 24:171–181

    Article  Google Scholar 

  • Wang H, Zhao J, Yang J, Wan S, Fu Y, Wang X, Zhou T, Zhang Z, Shen J (2021b) PICT1 is critical for regulating the Rps27a-Mdm2-p53 pathway by microtubule polymerization inhibitor against cervical cancer. Biochim Biophys Acta Mol Cell Res 1868:119084

    Article  CAS  Google Scholar 

  • Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741

    Article  CAS  Google Scholar 

  • Wei PL, Kuo LJ, Huang MT, Ting WC, Ho YS, Wang W, An J, Chang YJ (2011) Nicotine enhances colon cancer cell migration by induction of fibronectin. Ann Surg Oncol 18:1782–1790

    Article  Google Scholar 

  • Wellbrock C, Karasarides M, Marais R (2004) The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5:875–885

    Article  CAS  Google Scholar 

  • West KA, Castillo SS, Dennis PA (2002) Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist Updat 5:234–248

    Article  CAS  Google Scholar 

  • West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, Harris C, Belinsky S, Dennis PA (2003) Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest 111:81–90

    Article  CAS  Google Scholar 

  • Wittenberg RE, Wolfman SL, De Biasi M, Dani JA (2020) Nicotinic acetylcholine receptors and nicotine addiction: a brief introduction. Neuropharmacology 177:108256

    Article  CAS  Google Scholar 

  • Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH (2007a) Nicotine promotes colon tumor growth and angiogenesis through beta-adrenergic activation. Toxicol Sci 97:279–287

    Article  CAS  Google Scholar 

  • Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH (2007b) Nicotine promotes cell proliferation via alpha7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells. Toxicol Appl Pharmacol 221:261–267

    Article  CAS  Google Scholar 

  • Wu SQ, Lv YE, Lin BH, Luo LM, Lv SL, Bi AH, Jia YS (2013) Silencing of periostin inhibits nicotine-mediated tumor cell growth and epithelial–mesenchymal transition in lung cancer cells. Mol Med Rep 7:875–880

    Article  CAS  Google Scholar 

  • Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N, Chen W (2022) Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J 135:584–590

    Article  Google Scholar 

  • Xiang T, Fei R, Wang Z, Shen Z, Qian J, Chen W (2016) Nicotine enhances invasion and metastasis of human colorectal cancer cells through the nicotinic acetylcholine receptor downstream p38 MAPK signaling pathway. Oncol Rep 35:205–210

    Article  CAS  Google Scholar 

  • Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19:156–172

    Article  CAS  Google Scholar 

  • Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X (2019) Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer 18:26

    Article  Google Scholar 

  • Ye YN, Liu ES, Shin VY, Wu WK, Luo JC, Cho CH (2004) Nicotine promoted colon cancer growth via epidermal growth factor receptor, c-Src, and 5-lipoxygenase-mediated signal pathway. J Pharmacol Exp Ther 308:66–72

    Article  CAS  Google Scholar 

  • Yeh ES, Means AR (2007) PIN1, the cell cycle and cancer. Nat Rev Cancer 7:381–388

    Article  CAS  Google Scholar 

  • Yeung K, Janosch P, McFerran B, Rose DW, Mischak H, Sedivy JM, Kolch W (2000) Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein. Mol Cell Biol 20:3079–3085

    Article  CAS  Google Scholar 

  • Yildiz D (2004) Nicotine, its metabolism and an overview of its biological effects. Toxicon 43:619–632

    Article  CAS  Google Scholar 

  • Yuge K, Kikuchi E, Hagiwara M, Yasumizu Y, Tanaka N, Kosaka T, Miyajima A, Oya M (2015) Nicotine induces tumor growth and chemoresistance through activation of the PI3K/Akt/mTOR pathway in bladder cancer. Mol Cancer Ther 14:2112–2120

    Article  CAS  Google Scholar 

  • Zeegers MP, Goldbohm RA, van den Brandt PA (2002) A prospective study on active and environmental tobacco smoking and bladder cancer risk (The Netherlands). Cancer Causes Control 13:83–90

    Article  Google Scholar 

  • Zhang Q, Tang X, Zhang ZF, Velikina R, Shi S, Le AD (2007) Nicotine induces hypoxia-inducible factor-1alpha expression in human lung cancer cells via nicotinic acetylcholine receptor-mediated signaling pathways. Clin Cancer Res 13:4686–4694

    Article  CAS  Google Scholar 

  • Zhang C, Ding XP, Zhao QN, Yang XJ, An SM, Wang H, Xu L, Zhu L, Chen HZ (2016) Role of α7-nicotinic acetylcholine receptor in nicotine-induced invasion and epithelial-to-mesenchymal transition in human non-small cell lung cancer cells. Oncotarget 7:59199–59208

    Article  Google Scholar 

  • Zhang Y, Jia Y, Li P, Li H, Xiao D, Wang Y, Ma X (2017) Reciprocal activation of α5-nAChR and STAT3 in nicotine-induced human lung cancer cell proliferation. J Genet Genomics 44:355–362

    Article  CAS  Google Scholar 

  • Zhang N, Zhu T, Yu K, Shi M, Wang X, Wang L, Huang T, Li W, Liu Y, Zhang J (2019) Elevation of O-GlcNAc and GFAT expression by nicotine exposure promotes epithelial–mesenchymal transition and invasion in breast cancer cells. Cell Death Dis 10:343

    Article  Google Scholar 

  • Zhang Q, Ganapathy S, Avraham H, Nishioka T, Chen C (2020) Nicotine exposure potentiates lung tumorigenesis by perturbing cellular surveillance. Br J Cancer 122:904–911

    Article  CAS  Google Scholar 

  • Zhao L, Ackerman SL (2006) Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 18:444–452

    Article  CAS  Google Scholar 

  • Zhao H, Wang Y, Ren X (2019) Nicotine promotes the development of non-small cell lung cancer through activating LINC00460 and PI3K/Akt signaling. Biosci Rep 39:BSR20182443.

  • Zheng Y, Ritzenthaler JD, Roman J, Han S (2007) Nicotine stimulates human lung cancer cell growth by inducing fibronectin expression. Am J Respir Cell Mol Biol 37:681–690

    Article  CAS  Google Scholar 

  • Zhu X, Zhong J, Zhao Z, Sheng J, Wang J, Liu J, Cui K, Chang J, Zhao H, Wong S (2015) Epithelial derived CTGF promotes breast tumor progression via inducing EMT and collagen I fibers deposition. Oncotarget 6:25320–25338

    Article  Google Scholar 

  • Zhu H, Luo H, Shen Z, Hu X, Sun L, Zhu X (2016) Transforming growth factor-β1 in carcinogenesis, progression, and therapy in cervical cancer. Tumour Biol 37:7075–7083

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 82160625), Natural Science Foundation of Jiangxi Province of China (No. 20232BAB206139), and Natural Science Foundation of Chongqing of China (No. CSTB2023NSCQ-MSX0921).

Author information

Authors and Affiliations

Authors

Contributions

ZR was involved in the investigation, initial literature searches, and writing—original draft; YX, ZH, JW, HJ, ZZ, JZ, and TZ contributed to the investigation and initial literature searches; HW assisted in the conceptualization, initial literature searches, supervision, and writing—review and editing.

Corresponding author

Correspondence to Huai Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, Z., Xu, Y., He, Z. et al. Carcinogenicity of nicotine and signal pathways in cancer progression: a review. Environ Chem Lett 22, 239–272 (2024). https://doi.org/10.1007/s10311-023-01668-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-023-01668-1

Keywords

Navigation