Skip to main content

Advertisement

Log in

Methods to convert lignocellulosic waste into biohydrogen, biogas, bioethanol, biodiesel and value-added chemicals: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

In the context of climate change and the circular economy, there is an urgent need to develop biofuels and value-added chemicals from lignocellulosic waste such as agricultural waste that amounts to about 1 million tons annually. Here, we review lignocellulosic feedstocks for the generation of biofuels, biogas, and biohydrogen. Pretreatment technologies include chemical treatments such as acidic and alkaline, organosolv and ionic liquid-based treatments, deep eutectic solvents-based treatments, physical treatments such as steam explosion and supercritical fluid, and biological pretreatment. We present feasible ways to dissolve complex organic materials into monomeric units using advanced methods for lignocellulosic biomass pretreatment. Techno-economic aspects of biomass valorization are discussed. Moreover, this review aims at using biorefinery technologies in order to develop economically viable lignocellulosic chemicals and products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abraham A, Mathew AK, Park H, Choi O, Sindhu R, Parameswaran B, Pandey A, Park JH, Sang B-I (2020) Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Biores Technol 301:122725

    Article  CAS  Google Scholar 

  • Akcura M, Turan V, Kokten K, Kaplan M (2019) Fatty acid and some micro element compositions of cluster bean (Cyamopsis tetragonoloba) genotype seeds growing under Mediterranean climate. Ind Crops Products 128:140–146

    Article  CAS  Google Scholar 

  • Aznar A, Chalvin C, Shih PM, Maimann M, Ebert B, Birdseye DS, Loqué D, Scheller HV (2018) Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass. Biotechnol Biofuels 11(1):1–14

    Article  Google Scholar 

  • Baig K (2020) Interaction of enzymes with lignocellulosic materials: causes, mechanism and influencing factors. Bioresour Bioprocess 7(1):1–19

    Article  Google Scholar 

  • Balderas-Hernández VE, Correia K, Mahadevan R (2018) Inactivation of the transcription factor mig1 (YGL035C) in Saccharomyces cerevisiae improves tolerance towards monocarboxylic weak acids: acetic, formic and levulinic acid. J Ind Microbiol Biotechnol 45(8):735–751

    Article  Google Scholar 

  • Baral P, Munagala M, Shastri Y, Kumar V, Agrawal D (2021) Cost reduction approaches for fermentable sugar production from sugarcane bagasse and its impact on techno-economics and the environment. Cellulose 28(10):6305–6322. https://doi.org/10.1007/s10570-021-03940-5

    Article  CAS  Google Scholar 

  • Baruah J, Nath BK, Sharma R, Kumar S, Deka RC, Baruah DC, Kalita E (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6:141

    Article  Google Scholar 

  • Batog J, Wawro A (2021) Chemical and biological deconstruction in the conversion process of sorghum biomass for bioethanol. J Nat Fibers, 1–12

  • Beims R, Simonato C, Wiggers V (2019) Technology readiness level assessment of pyrolysis of trygliceride biomass to fuels and chemicals. Renew Sustain Energy Rev 112:521–529

    Article  CAS  Google Scholar 

  • Bellido C, Loureiro Pinto M, Coca M, Gonzalez-Benito G, Garcia-Cubero MT (2014) Acetone-butanol-ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: efficient use of penta and hexa carbohydrates. Bioresour Technol 167:198–205. https://doi.org/10.1016/j.biortech.2014.06.020

    Article  CAS  Google Scholar 

  • Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Patel AK, Pant D, Banu JR, Rao CV, Kim Y-G, Yang Y-H (2020) Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Biores Technol 300:122724

    Article  CAS  Google Scholar 

  • Bhatia R, Lad JB, Bosch M, Bryant DN, Leak D, Hallett JP, Franco TT, Gallagher JA (2021) Production of oligosaccharides and biofuels from Miscanthus using combinatorial steam explosion and ionic liquid pretreatment. Biores Technol 323:124625

    Article  CAS  Google Scholar 

  • Bianchini L, Costa P, Dell’Omo PP, Colantoni A, Cecchini M, Monarca D (2021) An industrial scale, mechanical process for improving pellet quality and biogas production from Hazelnut and Olive pruning. Energies 14(6):1600

    Article  CAS  Google Scholar 

  • Bichot A, Lerosty M, Radoiu M, Méchin V, Bernet N, Delgenès J-P, García-Bernet D (2020) Decoupling thermal and non-thermal effects of the microwaves for lignocellulosic biomass pretreatment. Energy Convers Manage 203:112220

    Article  CAS  Google Scholar 

  • Biddy MJ, Davis R, Humbird D, Tao L, Dowe N, Guarnieri MT, Linger JG, Karp EM, Salvachúa D, Vardon DR (2016) The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass. ACS Sustain Chem Eng 4(6):3196–3211

    Article  CAS  Google Scholar 

  • Bohre A, Saha B, Abu-Omar MM (2015) Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts. Chemsuschem 8(23):4022–4029

    Article  CAS  Google Scholar 

  • Brandon AG, Scheller HV (2020) Engineering of bioenergy crops: dominant genetic approaches to improve polysaccharide properties and composition in biomass. Front Plant Sci 11:282

    Article  Google Scholar 

  • Brandt BA, García-Aparicio MD, Görgens JF, Van Zyl WH (2021) Rational engineering of Saccharomyces cerevisiae towards improved tolerance to multiple inhibitors in lignocellulose fermentations. Biotechnol Biofuels 14(1):1–18

    Article  Google Scholar 

  • Brunecky R, Subramanian V, Yarbrough JM, Donohoe BS, Vinzant TB, Vanderwall TA, Knott BC, Chaudhari YB, Bomble YJ, Himmel ME (2020) Synthetic fungal multifunctional cellulases for enhanced biomass conversion. Green Chem 22(2):478–489

    Article  CAS  Google Scholar 

  • Capolupo L, Faraco V (2016) Green methods of lignocellulose pretreatment for biorefinery development. Appl Microbiol Biotechnol 100(22):9451–9467. https://doi.org/10.1007/s00253-016-7884-y

    Article  CAS  Google Scholar 

  • Carvalho AV, da Costa Lopes AM, Bogel-Łukasik R (2015) Relevance of the acidic 1-butyl-3-methylimidazolium hydrogen sulphate ionic liquid in the selective catalysis of the biomass hemicellulose fraction. RSC Adv 5(58):47153–47164. https://doi.org/10.1039/c5ra07159c

    Article  CAS  Google Scholar 

  • Chaves JE, Presley GN, Michener JK (2019) Modular engineering of biomass degradation pathways. Processes 7(4):230

    Article  CAS  Google Scholar 

  • Chen Z, Rao Y, Usman M, Chen H, Białowiec A, Zhang S, Luo G (2021) Anaerobic fermentation of hydrothermal liquefaction wastewater of dewatered sewage sludge for volatile fatty acids production with focuses on the degradation of organic components and microbial community compositions. Sci Total Environ 777:146077

    Article  CAS  Google Scholar 

  • Cheng C-L, Che P-Y, Chen B-Y, Lee W-J, Lin C-Y, Chang J-S (2012) Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Appl Energy 100:3–9. https://doi.org/10.1016/j.apenergy.2012.05.042

    Article  CAS  Google Scholar 

  • Chi X, Li J, Leu S-Y, Wang X, Zhang Y, Wang Y (2018) Features of a Staged Acidogenic/Solventogenic fermentation process to improve butanol production from rice straw. Energy Fuels 33(2):1123–1132. https://doi.org/10.1021/acs.energyfuels.8b03095

    Article  CAS  Google Scholar 

  • Chu Q, Tong W, Chen J, Wu S, Jin Y, Hu J, Song K (2021) Organosolv pretreatment assisted by carbocation scavenger to mitigate surface barrier effect of lignin for improving biomass saccharification and utilization. Biotechnol for Biofuels 14(1):136. https://doi.org/10.1186/s13068-021-01988-w

    Article  CAS  Google Scholar 

  • Chuetor S, Barakat A, Rouau X, Ruiz T (2017) Analysis of ground rice straw with a hydro-textural approach. Powder Technol 310:74–79

    Article  CAS  Google Scholar 

  • Chuetor S, Ruiz T, Barakat A, Laosiripojana N, Champreda V, Sriariyanun M (2021) Evaluation of rice straw biopowder from alkaline-mechanical pretreatment by hydro-textural approach. Biores Technol 323:124619

    Article  CAS  Google Scholar 

  • Dadwal A, Sharma S, Satyanarayana T (2020) Progress in ameliorating beneficial characteristics of microbial cellulases by genetic engineering approaches for cellulose saccharification. Front Microbiol 11:1387

    Article  Google Scholar 

  • Dahmen N, Lewandowski I, Zibek S, Weidtmann A (2019) Integrated lignocellulosic value chains in a growing bioeconomy: status quo and perspectives. Gcb Bioenergy 11(1):107–117

    Article  Google Scholar 

  • Dai Y, Van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH (2013) Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents. J Nat Prod 76(11):2162–2173

    Article  CAS  Google Scholar 

  • Das L, Achinivu EC, Barcelos CA, Sundstrom E, Amer B, Baidoo EEK, Simmons BA, Sun N, Gladden JM (2021) Deconstruction of Woody Biomass via Protic and Aprotic Ionic Liquid Pretreatment for Ethanol Production. ACS Sustain Chem Eng 9(12):4422–4432. https://doi.org/10.1021/acssuschemeng.0c07925

    Article  CAS  Google Scholar 

  • del Río JC, Rencoret J, Gutiérrez A, Elder T, Kim H, Ralph J (2020) Lignin monomers from beyond the canonical monolignol biosynthetic pathway: another brick in the wall. ACS Sustain Chem Eng 8(13):4997–5012

    Article  Google Scholar 

  • Delidovich I, Leonhard K, Palkovits R (2014) Cellulose and hemicellulose valorisation: an integrated challenge of catalysis and reaction engineering. Energy Environ Sci 7(9):1–5. https://doi.org/10.1039/c4ee01067a

    Article  CAS  Google Scholar 

  • Denkenberger D, Pearce JM (2014) Feeding everyone no matter what: Managing food security after global catastrophe. Academic Press, Cambridge

    Google Scholar 

  • Directive E (2008) Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Off J Eur Union 312(3):22

    Google Scholar 

  • Dovichi Filho FB, Santiago YC, Lora EES, Palacio JCE, del Olmo OAA (2021) Evaluation of the maturity level of biomass electricity generation technologies using the technology readiness level criteria. J Clean Prod 295:126426

    Article  Google Scholar 

  • Duque-Acevedo M, Belmonte-Urena LJ, Cortés-García FJ, Camacho-Ferre FJGE (2020) Agricultural waste: review of the evolution, approaches and perspectives on alternative uses. Global Ecol Conserv 22:e00902

    Article  Google Scholar 

  • Dutta N, Raj D, Biswas N, Mallick M, Omesh S (2017) Nanoparticle assisted activity optimization and characterization of a bacterial phytase immobilized on single layer graphene oxide. Biocatal Agric Biotechnol 9:240–247

    Article  Google Scholar 

  • Dutta N, Usman M, Luo G, Zhang S (2022) An insight into valorization of lignocellulosic biomass by optimization with the combination of hydrothermal (Ht) and biological techniques: a review. Sustain Chem 3(1):35–55

    Article  CAS  Google Scholar 

  • Escobar ELN, Da Silva TA, Pirich CL, Corazza ML, Pereira Ramos L (2020) Supercritical fluids: a promising technique for biomass pretreatment and fractionation. Front Bioeng Biotechnol 8:252

    Article  Google Scholar 

  • Esteban J, Vorholt AJ, Leitner W (2020) An overview of the biphasic dehydration of sugars to 5-hydroxymethylfurfural and furfural: a rational selection of solvents using COSMO-RS and selection guides. Green Chem 22(7):2097–2128. https://doi.org/10.1039/c9gc04208c

    Article  CAS  Google Scholar 

  • Eswaran S, Subramaniam S, Geleynse S, Brandt K, Wolcott M, Zhang X (2021) Techno-economic analysis of catalytic hydrothermolysis pathway for jet fuel production. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2021.111516

    Article  Google Scholar 

  • Flores-Gómez CA, Escamilla Silva EM, Zhong C, Dale BE, da Costa SL, Balan V (2018) Conversion of lignocellulosic agave residues into liquid biofuels using an AFEX™-based biorefinery. Biotechnol Biofuels 11(1):1–18

    Article  Google Scholar 

  • Francisco M, van den Bruinhorst A, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14(8):2153–2157

    Article  CAS  Google Scholar 

  • Gajda I, Greenman J, Ieropoulos IA (2018) Recent advancements in real-world microbial fuel cell applications. Curr Opin Electrochem 11:78–83

    Article  CAS  Google Scholar 

  • Garcia-Bernet D, Ferraro V, Moscoviz R (2020) Coproduits des IAA: un vivier mondial sous-exploité de biomolécules d’intérêt (chap 8). (Lavoisier Tec & Doc)

  • Geng B-Y, Cao L-Y, Li F, Song H, Liu C-G, Zhao X-Q, Bai F-W (2020) Potential of Zymomonas mobilis as an electricity producer in ethanol production. Biotechnol Biofuels 13(1):1–11

    Article  Google Scholar 

  • Gezae Daful A, Görgens JF (2017) Techno-economic analysis and environmental impact assessment of lignocellulosic lactic acid production. Chem Eng Sci 162:53–65. https://doi.org/10.1016/j.ces.2016.12.054

    Article  CAS  Google Scholar 

  • Gottumukkala LD, Parameswaran B, Valappil SK, Mathiyazhakan K, Pandey A, Sukumaran RK (2013) Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01. Bioresour Technol 145:182–187. https://doi.org/10.1016/j.biortech.2013.01.046

    Article  CAS  Google Scholar 

  • Grisolia MJ, Peralta DA, Valdez HA, Barchiesi J, Gomez-Casati DF, Busi MV (2017) The targeting of starch binding domains from starch synthase III to the cell wall alters cell wall composition and properties. Plant Mol Biol 93(1):121–135

    Article  CAS  Google Scholar 

  • Hamelin L, Borzęcka M, Kozak M, Pudełko R (2019) A spatial approach to bioeconomy: quantifying the residual biomass potential in the EU-27. Renew Sustain Energy Rev 100:127–142

    Article  Google Scholar 

  • Han X, Geng L, Guo Y, Jia R, Liu X, Zhang Y, Wang Y (2016) Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C–O–Mg catalyst. Green Chem 18(6):1597–1604. https://doi.org/10.1039/c5gc02114f

    Article  CAS  Google Scholar 

  • Hao S, Ren S, Zhou N, Chen H, Usman M, He C, Shi Q, Luo G, Zhang S (2020) Molecular composition of hydrothermal liquefaction wastewater from sewage sludge and its transformation during anaerobic digestion. J Hazard Mater 383:121163

    Article  CAS  Google Scholar 

  • Hayashi E, Yamaguchi Y, Kamata K, Tsunoda N, Kumagai Y, Oba F, Hara M (2019) Effect of MnO2 Crystal Structure on Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. J Am Chem Soc 141(2):890–900. https://doi.org/10.1021/jacs.8b09917

    Article  CAS  Google Scholar 

  • Heleniak T (2021) The future of the Arctic populations. Polar Geogr 44(2):136–152

    Article  Google Scholar 

  • Hu L, Lin L, Wu Z, Zhou S, Liu S (2015) Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Appl Catal B 174:225–243

    Article  Google Scholar 

  • Huang H, Meng D, Lai X, Zhao Y, Zhou P, Wang Q, Huang H, Qiang J (2015) TiZrNi quasicrystal film prepared by magnetron sputtering. Vacuum 122:147–153. https://doi.org/10.1016/j.vacuum.2015.09.025

    Article  CAS  Google Scholar 

  • Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6(25):4497–4559

    Article  CAS  Google Scholar 

  • Islam MK, Wang H, Rehman S, Dong C, Hsu H-Y, Lin CSK, Leu S-Y (2020) Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery. Biores Technol 298:122558

    Article  CAS  Google Scholar 

  • Jędrzejczyk M, Soszka E, Czapnik M, Ruppert AM, Grams J (2019) Physical and chemical pretreatment of lignocellulosic biomass. In ‘Second and Third Generation of Feedstocks’. pp. 143–196. (Elsevier)

  • Ji M, Sang W, Tsang DC, Usman M, Zhang S, Luo G (2020) Molecular and microbial insights towards understanding the effects of hydrochar on methane emission from paddy soil. Sci Total Environ 714:136769

    Article  CAS  Google Scholar 

  • Ji M, Wang X, Usman M, Liu F, Dan Y, Zhou L, Campanaro S, Luo G, Sang W (2022) Effects of different feedstocks-based biochar on soil remediation: a review. Environ Pollut 294:118655

    Article  CAS  Google Scholar 

  • Jiang Y, Liu J, Jiang W, Yang Y, Yang S (2015) Current status and prospects of industrial bio-production of n-butanol in China. Biotechnol Adv 33(7):1493–1501. https://doi.org/10.1016/j.biotechadv.2014.10.007

    Article  CAS  Google Scholar 

  • Kainthola J, Podder A, Fechner M, Goel R (2021) An overview of fungal pretreatment processes for anaerobic digestion: applications, bottlenecks and future needs. Biores Technol 321:124397

    Article  CAS  Google Scholar 

  • Karinen R, Vilonen K, Niemela M (2011) Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. Chemsuschem 4(8):1002–1016. https://doi.org/10.1002/cssc.201000375

    Article  CAS  Google Scholar 

  • Khan MU, Usman M, Ashraf MA, Dutta N, Luo G, Zhang S (2022) A review of recent advancements in pretreatment techniques of lignocellulosic materials for biogas production: opportunities and limitations. Chem Eng J Adv, 100263

  • Kim JS, Lee Y, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Biores Technol 199:42–48

    Article  CAS  Google Scholar 

  • Kirby J, Geiselman GM, Yaegashi J, Kim J, Zhuang X, Tran-Gyamfi MB, Prahl J-P, Sundstrom ER, Gao Y, Munoz N (2021) Further engineering of R. toruloides for the production of terpenes from lignocellulosic biomass. Biotechnol Biofuels 14(1):1–16

    Article  Google Scholar 

  • Knothe G (2010) Biodiesel and renewable diesel: a comparison. Prog Energy Combust Sci 36(3):364–373. https://doi.org/10.1016/j.pecs.2009.11.004

    Article  CAS  Google Scholar 

  • Kucherov FA, Romashov LV, Galkin KI, Ananikov VP (2018) Chemical transformations of biomass-derived C6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks. ACS Sustain Chem Eng 6(7):8064–8092. https://doi.org/10.1021/acssuschemeng.8b00971

    Article  CAS  Google Scholar 

  • Kumar M, Oyedun AO, Kumar A (2018a) A review on the current status of various hydrothermal technologies on biomass feedstock. Renew Sustain Energy Rev 81:1742–1770

    Article  Google Scholar 

  • Kumar V, Binod P, Sindhu R, Gnansounou E, Ahluwalia V (2018b) Bioconversion of pentose sugars to value added chemicals and fuels: recent trends, challenges and possibilities. Biores Technol 269:443–451

    Article  CAS  Google Scholar 

  • Kumar MN, Rao AG, Juntupally S, Arelli V, Begum S (2022) Intervention of microorganisms for the pretreatment of lignocellulosic biomass to extract the fermentable sugars for biofuel production. Renew Energy Sustain Growth Assessment, 217–242

  • Kuo P-C, Yu J (2020) Process simulation and techno-economic analysis for production of industrial sugars from lignocellulosic biomass. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2020.112783

    Article  Google Scholar 

  • Leal Silva JF, Grekin R, Mariano AP, Maciel Filho R (2018) Making Levulinic Acid and Ethyl Levulinate economically viable: a worldwide technoeconomic and environmental assessment of possible routes. Energ Technol 6(4):613–639. https://doi.org/10.1002/ente.201700594

    Article  CAS  Google Scholar 

  • Ledesma-Amaro R, Lazar Z, Rakicka M, Guo Z, Fouchard F, Crutz-Le Coq A-M, Nicaud J-M (2016) Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Metab Eng 38:115–124

    Article  CAS  Google Scholar 

  • Lee J-Y, Lee S-E, Lee D-W (2022) Current status and future prospects of biological routes to bio-based products using raw materials, wastes, and residues as renewable resources. Crit Rev Environ Sci Technol 52(14):2453–2509

    Article  Google Scholar 

  • Leskinen T, Kelley SS, Argyropoulos DS (2017) E-beam irradiation & steam explosion as biomass pretreatment, and the complex role of lignin in substrate recalcitrance. Biomass Bioenerg 103:21–28

    Article  CAS  Google Scholar 

  • Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115(21):11559–11624

    Article  CAS  Google Scholar 

  • Li M, Wang S, Liu Y, Zhang Y, Ren M, Liu L, Lu T, Wei H, Wei Z (2019) Overexpression of PsnSuSy1, 2 genes enhances secondary cell wall thickening, vegetative growth, and mechanical strength in transgenic tobacco. Plant Mol Biol 100(3):215–230

    Article  CAS  Google Scholar 

  • Li J, Zhang Y, Li J, Sun T, Tian C (2020) Metabolic engineering of the cellulolytic thermophilic fungus Myceliophthora thermophila to produce ethanol from cellobiose. Biotechnol Biofuels 13(1):1–15

    Article  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467. https://doi.org/10.1016/j.pecs.2012.03.002

    Article  CAS  Google Scholar 

  • Liu T, Sung S (2002) Ammonia inhibition on thermophilic aceticlastic methanogens. Water Sci Technol 45(10):113–120

    Article  CAS  Google Scholar 

  • Liu Y, Nie Y, Lu X, Zhang X, He H, Pan F, Zhou L, Liu X, Ji X, Zhang S (2019) Cascade utilization of lignocellulosic biomass to high-value products. Green Chem 21(13):3499–3535. https://doi.org/10.1039/c9gc00473d

    Article  CAS  Google Scholar 

  • Long LY, Weng YX, Wang YZ (2018) Cellulose aerogels: synthesis, applications, and prospects. Polymers (basel). https://doi.org/10.3390/polym10060623

    Article  Google Scholar 

  • Lopez-Hidalgo AM, Alvarado-Cuevas ZD, De Leon-Rodriguez A (2018) Biohydrogen production from mixtures of agro-industrial wastes: Chemometric analysis, optimization and scaling up. Energy 159:32–41. https://doi.org/10.1016/j.energy.2018.06.124

    Article  CAS  Google Scholar 

  • Lorenci Woiciechowski A, Dalmas Neto CJ, Porto de Souza Vandenberghe L, de Carvalho Neto DP, Novak Sydney AC, Letti LAJ, Karp SG, Zevallos Torres LA, Soccol CR (2020) Lignocellulosic biomass: acid and alkaline pretreatments and their effects on biomass recalcitrance–conventional processing and recent advances. Bioresour Technol

  • Luo H, Zeng Q, Han S, Wang Z, Dong Q, Bi Y, Zhao Y (2017) High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition. World J Microbiol Biotechnol 33(4):1–10

    Article  CAS  Google Scholar 

  • Mankar AR, Pandey A, Modak A, Pant K (2021) Pretreatment of lignocellulosic biomass: a review on recent advances. Biores Technol 334:125235

    Article  CAS  Google Scholar 

  • Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555

    Article  CAS  Google Scholar 

  • Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9(4):1144–1189. https://doi.org/10.1039/c5ee02666k

    Article  CAS  Google Scholar 

  • Mat Aron NS, Khoo KS, Chew KW, Show PL, Chen WH, Nguyen THP (2020) Sustainability of the four generations of biofuels–a review. Int J Energy Res 44(12):9266–9282

    Article  CAS  Google Scholar 

  • Mellmer MA, Sener C, Gallo JM, Luterbacher JS, Alonso DM, Dumesic JA (2014) Solvent effects in acid-catalyzed biomass conversion reactions. Angew Chem Int Ed Engl 53(44):11872–11875. https://doi.org/10.1002/anie.201408359

    Article  CAS  Google Scholar 

  • Mohan SV, Nikhil G, Chiranjeevi P, Reddy CN, Rohit M, Kumar AN, Sarkar O (2016) Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Biores Technol 215:2–12

    Article  Google Scholar 

  • Moradi F, Amiri H, Soleimanian-Zad S, Ehsani MR, Karimi K (2013) Improvement of acetone, butanol and ethanol production from rice straw by acid and alkaline pretreatments. Fuel 112:8–13. https://doi.org/10.1016/j.fuel.2013.05.011

    Article  CAS  Google Scholar 

  • Moradian JM, Fang Z, Yong Y-C (2021) Recent advances on biomass-fueled microbial fuel cell. Bioresour Bioprocess 8(1):1–13

    Article  Google Scholar 

  • Morales-Martínez TK, Medina-Morales MA, Ortíz-Cruz AL, Rodríguez-De la Garza JA, Moreno-Dávila M, López-Badillo CM, Ríos-González L (2020) Consolidated bioprocessing of hydrogen production from agave biomass by Clostridium acetobutylicum and bovine ruminal fluid. Int J Hydrogen Energy 45(26):13707–13716. https://doi.org/10.1016/j.ijhydene.2019.11.089

    Article  CAS  Google Scholar 

  • Mottet A, de Haan C, Falcucci A, Tempio G, Opio C, Gerber P (2017) Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob Food Sec 14:1–8

    Article  Google Scholar 

  • Mu D, Seager T, Rao PS, Zhao F (2010) Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion. Environ Manage 46(4):565–578. https://doi.org/10.1007/s00267-010-9494-2

    Article  Google Scholar 

  • Muscat A, de Olde EM, Ripoll-Bosch R, Van Zanten HH, Metze TA, Termeer CJ, van Ittersum MK, de Boer IJ (2021) Principles, drivers and opportunities of a circular bioeconomy. Nature Food 2(8):561–566

    Article  Google Scholar 

  • Mussatto SI, Bikaki N (2016) Technoeconomic considerations for biomass fractionation in a biorefinery context. In 'Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery'. pp. 587–610

  • Nazli RI, Gulnaz O, Kafkas E, Tansi V (2021) Comparison of different chemical pretreatments for their effects on fermentable sugar production from miscanthus biomass. Biomass Conversion Biorefinery, 1–9

  • Niu E, Fang S, Shang X, Guo W (2018) Ectopic expression of GhCOBL9A, a cotton glycosyl-phosphatidyl inositol-anchored protein encoding gene, promotes cell elongation, thickening and increased plant biomass in transgenic Arabidopsis. Mol Genet Genomics 293(5):1191–1204

    Article  CAS  Google Scholar 

  • Noppawan P, Lanctôt AG, Magro M, Navarro PG, Supanchaiyamat N, Attard TM, Hunt AJ (2021) High pressure systems as sustainable extraction and pre-treatment technologies for a holistic corn stover biorefinery. BMC Chem 15(1):1–11

    Article  Google Scholar 

  • Okolie JA, Mukherjee A, Nanda S, Dalai AK, Kozinski JA (2021a) Next-generation biofuels and platform biochemicals from lignocellulosic biomass. Int J Energy Res 45(10):14145–14169. https://doi.org/10.1002/er.6697

    Article  CAS  Google Scholar 

  • Okolie JA, Nanda S, Dalai AK, Kozinski JA (2021b) Techno-economic evaluation and sensitivity analysis of a conceptual design for supercritical water gasification of soybean straw to produce hydrogen. Bioresour Technol 331:125005. https://doi.org/10.1016/j.biortech.2021.125005

    Article  CAS  Google Scholar 

  • Oon Y-L, Ong S-A, Ho L-N, Wong Y-S, Dahalan FA, Oon Y-S, Teoh T-P, Lehl HK, Thung W-E (2020) Constructed wetland–microbial fuel cell for azo dyes degradation and energy recovery: influence of molecular structure, kinetics, mechanisms and degradation pathways. Sci Total Environ 720:137370

    Article  CAS  Google Scholar 

  • Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC (2014) Natural deep eutectic solvents–solvents for the 21st century. ACS Sustain Chem Eng 2(5):1063–1071

    Article  CAS  Google Scholar 

  • Patel AK, Singhania RR, Sim SJ, Pandey A (2019) Thermostable cellulases: current status and perspectives. Biores Technol 279:385–392

    Article  CAS  Google Scholar 

  • Patri AS, Mohan R, Pu Y, Yoo CG, Ragauskas AJ, Kumar R, Kisailus D, Cai CM, Wyman CE (2021) THF co-solvent pretreatment prevents lignin redeposition from interfering with enzymes yielding prolonged cellulase activity. Biotechnol for Biofuels 14(1):63. https://doi.org/10.1186/s13068-021-01904-2

    Article  CAS  Google Scholar 

  • Rahim AHA, Man Z, Sarwono A, Muhammad N, Khan AS, Hamzah WSW, Yunus NM, Elsheikh YA (2019) Probe sonication assisted ionic liquid treatment for rapid dissolution of lignocellulosic biomass. Cellulose 27(4):2135–2148. https://doi.org/10.1007/s10570-019-02914-y

    Article  CAS  Google Scholar 

  • Rajeh C, Saoud IP, Kharroubi S, Naalbandian S, Abiad MGJJoMC, Management W (2021) Food loss and food waste recovery as animal feed: a systematic review. J Mater Cycles Waste Manag 23(1), 1-17

  • Reem NT, Pogorelko G, Lionetti V, Chambers L, Held MA, Bellincampi D, Zabotina OA (2016) Decreased polysaccharide feruloylation compromises plant cell wall integrity and increases susceptibility to necrotrophic fungal pathogens. Front Plant Sci 7:630

    Article  Google Scholar 

  • Ren N-Q, Zhao L, Chen C, Guo W-Q, Cao G-L (2016) A review on bioconversion of lignocellulosic biomass to H2: key challenges and new insights. Biores Technol 215:92–99

    Article  CAS  Google Scholar 

  • Ren S, Usman M, Tsang DC, O-Thong S, Angelidaki I, Zhu X, Zhang S, Luo G (2020) Hydrochar-facilitated anaerobic digestion: evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups. Environ Sci Technol 54 (9), 5755–5766

  • Roy S, Dikshit PK, Sherpa KC, Singh A, Jacob S, Rajak RC (2021) Recent nanobiotechnological advancements in lignocellulosic biomass valorization: a review. J Environ Manage 297:113422

    Article  CAS  Google Scholar 

  • Saini R, Patel AK, Saini JK, Chen C-W, Varjani S, Singhania RR, Di Dong C (2022) Recent advancements in prebiotic oligomers synthesis via enzymatic hydrolysis of lignocellulosic biomass. Bioengineered 13(2):2139–2172

    Article  CAS  Google Scholar 

  • Sasaki M, Ohsawa K (2021) Hydrolysis of Lignocellulosic Biomass in Hot-Compressed Water with Supercritical Carbon Dioxide. ACS Omega 6(22):14252–14259

    Article  CAS  Google Scholar 

  • Savla N, Pandit S, Mathuriya AS, Gupta PK, Khanna N, Babu RP, Kumar S (2021) Recent advances in bioelectricity generation through the simultaneous valorization of lignocellulosic biomass and wastewater treatment in microbial fuel cell. Sustain Energy Technol Assess 48:101572

    Google Scholar 

  • Shafrin F, Ferdous AS, Sarkar SK, Ahmed R, Amin A, Hossain K, Sarker M, Rencoret J, Gutierrez A, Del Rio JC, Sanan-Mishra N, Khan H (2017) Modification of monolignol biosynthetic pathway in jute: different gene. Diff Consequence Sci Rep 7:39984. https://doi.org/10.1038/srep39984

    Article  CAS  Google Scholar 

  • Shahbaz M, Al-Ansari T, Aslam M, Khan Z, Inayat A, Athar M, Naqvi SR, Ahmed MA, McKay G (2020) A state of the art review on biomass processing and conversion technologies to produce hydrogen and its recovery via membrane separation. Int J Hydrogen Energy 45(30):15166–15195. https://doi.org/10.1016/j.ijhydene.2020.04.009

    Article  CAS  Google Scholar 

  • Sheng Y, Lam SS, Wu Y, Ge S, Wu J, Cai L, Huang Z, Van Le Q, Sonne C, Xia C (2021a) Enzymatic conversion of pretreated lignocellulosic biomass: a review on influence of structural changes of lignin. Biores Technol 324:124631

    Article  CAS  Google Scholar 

  • Sheng Y, Tan X, Gu Y, Zhou X, Tu M, Xu Y (2021b) Effect of ascorbic acid assisted dilute acid pretreatment on lignin removal and enzyme digestibility of agricultural residues. Renew Energy 163:732–739

    Article  CAS  Google Scholar 

  • Shi Z, Campanaro S, Usman M, Treu L, Basile A, Angelidaki I, Zhang S, Luo G (2021a) Genome-centric metatranscriptomics analysis reveals the role of hydrochar in anaerobic digestion of waste activated sludge. Environ Sci Technol 55(12):8351–8361

    Article  CAS  Google Scholar 

  • Shi Z, Usman M, He J, Chen H, Zhang S, Luo G (2021b) Combined microbial transcript and metabolic analysis reveals the different roles of hydrochar and biochar in promoting anaerobic digestion of waste activated sludge. Water Res 205:117679

    Article  CAS  Google Scholar 

  • Sikora A, Detman A, Chojnacka A, Błaszczyk MK (2017) Anaerobic digestion: I. A common process ensuring energy flow and the circulation of matter in ecosystems. II. A tool for the production of gaseous biofuels. Ferment Processes 14:271

    Google Scholar 

  • Singh S, Sinha R, Kundu S (2021) Role of organosolv pretreatment on enzymatic hydrolysis of mustard biomass for increased saccharification. Biomass Conv Biorefinery. https://doi.org/10.1007/s13399-020-01251-6

    Article  Google Scholar 

  • Singhania RR, Patel AK, Singh A, Haldar D, Soam S, Chen C-W, Tsai M-L, Dong C-D (2022) Consolidated bioprocessing of lignocellulosic biomass: technological advances and challenges. Bioresour Technol, 127153

  • Srifa A, Faungnawakij K, Itthibenchapong V, Assabumrungrat S (2015) Roles of monometallic catalysts in hydrodeoxygenation of palm oil to green diesel. Chem Eng J 278:249–258. https://doi.org/10.1016/j.cej.2014.09.106

    Article  CAS  Google Scholar 

  • Srivastava N, Srivastava M, Malhotra BD, Gupta VK, Ramteke PW, Silva RN, Shukla P, Dubey KK, Mishra PK (2019) Nanoengineered cellulosic biohydrogen production via dark fermentation: a novel approach. Biotechnol Adv 37(6):107384. https://doi.org/10.1016/j.biotechadv.2019.04.006

    Article  CAS  Google Scholar 

  • Straub CT, Bing RG, Otten JK, Keller LM, Zeldes BM, Adams MW, Kelly RM (2020) Metabolically engineered Caldicellulosiruptor bescii as a platform for producing acetone and hydrogen from lignocellulose. Biotechnol Bioeng 117(12):3799–3808

    Article  CAS  Google Scholar 

  • Suhas GVK, Carrott PJ, Singh R, Chaudhary M, Kushwaha S (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour Technol 216:1066–1076. https://doi.org/10.1016/j.biortech.2016.05.106

    Article  CAS  Google Scholar 

  • Teigiserova DA, Hamelin L, Thomsen M (2020) Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Sci Total Environ 706:136033

    Article  CAS  Google Scholar 

  • Tran TN, Breuer RJ, Avanasi Narasimhan R, Parreiras LS, Zhang Y, Sato TK, Durrett TP (2017) Metabolic engineering of Saccharomyces cerevisiae to produce a reduced viscosity oil from lignocellulose. Biotechnol Biofuels 10(1):1–12

    Article  Google Scholar 

  • Turan V (2020) Potential of pistachio shell biochar and dicalcium phosphate combination to reduce Pb speciation in spinach, improved soil enzymatic activities, plant nutritional quality, and antioxidant defense system. Chemosphere 245:125611

    Article  CAS  Google Scholar 

  • Turan V (2022) Calcite in combination with olive pulp biochar reduces Ni mobility in soil and its distribution in chili plant. Int J Phytorem 24(2):166–176

    Article  CAS  Google Scholar 

  • Ubando AT, Felix CB, Chen WH (2020) Biorefineries in circular bioeconomy: a comprehensive review. Bioresour Technol 299:122585. https://doi.org/10.1016/j.biortech.2019.122585

    Article  CAS  Google Scholar 

  • Ummalyma SB, Supriya RD, Sindhu R, Binod P, Nair RB, Pandey A, Gnansounou E (2019) Biological pretreatment of lignocellulosic biomass—Current trends and future perspectives. In 'Second and Third Generation of Feedstocks'. pp. 197–212. (Elsevier)

  • Usman M, Ishfaq MT, Malik SR, Iqbal M, Ishfaq B (2014a) Alkaline extraction of starch from broken rice of Pakistan. Int J Innov Appl Stud 7(1):146

    Google Scholar 

  • Usman M, Chen H, Chen K, Ren S, Clark JH, Fan J, Luo G, Zhang S (2019a) Characterization and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char production: a review. Green Chem 21(7):1553–1572

    Article  CAS  Google Scholar 

  • Usman M, Hao S, Chen H, Ren S, Tsang DC, Sompong O, Luo G, Zhang S (2019b) Molecular and microbial insights towards understanding the anaerobic digestion of the wastewater from hydrothermal liquefaction of sewage sludge facilitated by granular activated carbon (GAC). Environ Int 133:105257

    Article  CAS  Google Scholar 

  • Usman M, Ren S, Ji M, Sompong O, Qian Y, Luo G, Zhang S (2020a) Characterization and biogas production potentials of aqueous phase produced from hydrothermal carbonization of biomass–Major components and their binary mixtures. Chem Eng J 388:124201

    Article  CAS  Google Scholar 

  • Usman M, Shi Z, Ren S, Ngo HH, Luo G, Zhang S (2020b) Hydrochar promoted anaerobic digestion of hydrothermal liquefaction wastewater: Focusing on the organic degradation and microbial community. Chem Eng J 399:125766

    Article  CAS  Google Scholar 

  • Usman M, Shi Z, Ji M, Ren S, Luo G, Zhang S (2021) Microbial insights towards understanding the role of hydrochar in alleviating ammonia inhibition during anaerobic digestion. Chem Eng J 419:129541

    Article  CAS  Google Scholar 

  • Usman M, Ishfaq MT, Malik SR, Ishfaq B, Iqbal M (2014b) Effects of Temperature, pH and Steeping Time on the Extraction of Starch from Pakistani Rice. Int J Scientific Engr Res, 877–892

  • Usman M, Shi Z, Dutta N, Ashraf MA, Ishfaq B, El-Din MG (2022) Current challenges of hydrothermal treated wastewater (HTWW) for environmental applications and their perspectives: A review. Environ Res, 113532

  • Usmani Z, Sharma M, Karpichev Y, Pandey A, Kuhad RC, Bhat R, Punia R, Aghbashlo M, Tabatabaei M, Gupta VK (2020) Advancement in valorization technologies to improve utilization of bio-based waste in bioeconomy context. Renew Sustain Energy Rev 131:109965

    Article  Google Scholar 

  • Uthandi S, Kaliyaperumal A, Srinivasan N, Thangavelu K, Muniraj IK, Zhan X, Gathergood N, Gupta VK (2022) Microbial biodiesel production from lignocellulosic biomass: new insights and future challenges. Crit Rev Environ Sci Technol 52(12):2197–2225

    Article  Google Scholar 

  • van Hal O (2020) Upcycling biomass in a circular food system: The role of livestock and fish. Wageningen University and Research

  • Vásquez-Garay F, Carrillo-Varela I, Vidal C, Reyes-Contreras P, Faccini M, Teixeira Mendonça R (2021) A review on the lignin biopolymer and its integration in the elaboration of sustainable materials. Sustainability 13(5):2697

    Article  Google Scholar 

  • Vu A, Wickramasinghe SR, Qian X (2018) Polymeric solid acid catalysts for lignocellulosic biomass fractionation. Ind Eng Chem Res 57(13):4514–4525

    Article  CAS  Google Scholar 

  • Wang S, Tao X, Zhang G, Zhang P, Wang H, Ye J, Li F, Zhang Q, Nabi M (2019) Benefit of solid-liquid separation on volatile fatty acid production from grass clipping with ultrasound-calcium hydroxide pretreatment. Biores Technol 274:97–104

    Article  CAS  Google Scholar 

  • Wu Y, Ge S, Xia C, Mei C, Kim K-H, Cai L, Smith LM, Lee J, Shi SQ (2021) Application of intermittent ball milling to enzymatic hydrolysis for efficient conversion of lignocellulosic biomass into glucose. Renew Sustain Energy Rev 136:110442

    Article  CAS  Google Scholar 

  • Xin F, Dong W, Zhang W, Ma J, Jiang M (2019) Biobutanol production from crystalline cellulose through consolidated bioprocessing. Trends Biotechnol 37(2):167–180

    Article  CAS  Google Scholar 

  • Xu C, Paone E, Rodriguez-Padron D, Luque R, Mauriello F (2020) Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem Soc Rev 49(13):4273–4306. https://doi.org/10.1039/d0cs00041h

    Article  CAS  Google Scholar 

  • Yadav M, Paritosh K, Chawade A, Pareek N, Vivekanand V (2018) Genetic engineering of energy crops to reduce recalcitrance and enhance biomass digestibility. Agriculture 8(6):76

    Article  Google Scholar 

  • Yadav VK, Gupta N, Kumar P, Dashti MG, Tirth V, Khan SH, Yadav KK, Islam S, Choudhary N, Algahtani A (2022) Recent Advances in Synthesis and Degradation of Lignin and Lignin Nanoparticles and Their Emerging Applications in Nanotechnology. Materials

  • Yan K, Wu G, Lafleur T, Jarvis C (2014) Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew Sustain Energy Rev 38:663–676. https://doi.org/10.1016/j.rser.2014.07.003

    Article  CAS  Google Scholar 

  • Yang H, Wang D, Li B, Zeng Z, Qu L, Zhang W, Chen H (2018) Effects of potassium salts loading on calcium oxide on the hydrogen production from pyrolysis-gasification of biomass. Bioresour Technol 249:744–750. https://doi.org/10.1016/j.biortech.2017.10.083

    Article  CAS  Google Scholar 

  • Yang J, Ching YC, Chuah CH (2019) Applications of lignocellulosic fibers and lignin in bioplastics: a review. Polymers 11(5):751

    Article  CAS  Google Scholar 

  • Yi T, Zhao H, Mo Q, Pan D, Liu Y, Huang L, Xu H, Hu B, Song H (2020) From cellulose to cellulose nanofibrils—A comprehensive review of the preparation and modification of cellulose nanofibrils. Materials 13(22):5062

    Article  CAS  Google Scholar 

  • Yiin CL, Yap KL, Ku AZE, Chin BLF, Lock SSM, Cheah KW, Loy ACM, Chan YH (2021) Recent advances in green solvents for lignocellulosic biomass pretreatment: potential of choline chloride (ChCl) based solvents. Biores Technol 333:125195

    Article  CAS  Google Scholar 

  • Yong Qiu KP (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339

    Article  Google Scholar 

  • Yook SD, Kim J, Gong G, Ko JK, Um Y, Han SO, Lee SM (2020) High-yield lipid production from lignocellulosic biomass using engineered xylose-utilizing Yarrowia lipolytica. Gcb Bioenergy 12(9):670–679

    Article  CAS  Google Scholar 

  • Yousuf A, Pirozzi D, Sannino F (2020) Fundamentals of lignocellulosic biomass. In 'Lignocellulosic Biomass to Liquid Biofuels'. pp. 1–15. (Elsevier)

  • Yu Q, Zhang A, Wang W, Chen L, Bai R, Zhuang X, Wang Q, Wang Z, Yuan Z (2018) Deep eutectic solvents from hemicellulose-derived acids for the cellulosic ethanol refining of Akebia’herbal residues. Biores Technol 247:705–710

    Article  CAS  Google Scholar 

  • Yu W, Wang C, Yi Y, Wang H, Zeng L, Li M, Yang Y, Tan Z (2020a) Comparison of deep eutectic solvents on pretreatment of raw ramie fibers for cellulose nanofibril production. ACS Omega 5(10):5580–5588. https://doi.org/10.1021/acsomega.0c00506

    Article  CAS  Google Scholar 

  • Yu Y-Y, Wang Y-Z, Fang Z, Shi Y-T, Cheng Q-W, Chen Y-X, Shi W, Yong Y-C (2020b) Single cell electron collectors for highly efficient wiring-up electronic abiotic/biotic interfaces. Nat Commun 11(1):1–10

    Article  CAS  Google Scholar 

  • Yuan J, Liu S, Jia L, Ji A, Chatterjee SG (2020) Co-generation system of bioethanol and electricity with microbial fuel cell technology. Energy Fuels 34(5):6414–6422

    Article  CAS  Google Scholar 

  • Zanellati A, Spina F, Bonaterra M, Dinuccio E, Varese GC, Scarpeci TE (2021) Screening and evaluation of phenols and furans degrading fungi for the biological pretreatment of lignocellulosic biomass. Int Biodeterior Biodegradation 161:105246

    Article  CAS  Google Scholar 

  • Zhang Y, Bi P, Wang J, Jiang P, Wu X, Xue H, Liu J, Zhou X, Li Q (2015) Production of jet and diesel biofuels from renewable lignocellulosic biomass. Appl Energy 150:128–137. https://doi.org/10.1016/j.apenergy.2015.04.023

    Article  CAS  Google Scholar 

  • Zhao L, Cao GL, Wang AJ, Ren HY, Xu CJ, Ren NQ (2013) Enzymatic saccharification of cornstalk by onsite cellulases produced by Trichoderma viride for enhanced biohydrogen production. Gcb Bioenergy 5(5):591–598

    Article  CAS  Google Scholar 

  • Zhao C, Chen S, Fang H (2018) Consolidated bioprocessing of lignocellulosic biomass to itaconic acid by metabolically engineering Neurospora crassa. Appl Microbiol Biotechnol 102(22):9577–9584

    Article  CAS  Google Scholar 

  • Zhao Y, Xu H, Wang K, Lu K, Qu Y, Zhu L, Wang S (2019) Enhanced furfural production from biomass and its derived carbohydrates in the renewable butanone–water solvent system. Sustain Energy Fuels 3(11):3208–3218. https://doi.org/10.1039/c9se00459a

    Article  CAS  Google Scholar 

  • Zoghlami A, Paës G (2019) Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front Chem, 874

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant No. 31970117), Science and Technology Commission of Shanghai Municipality (19DZ1204704), and the program of China Scholarship Council (CSC, No. 201708310124).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Usman or Shicheng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, N., Usman, M., Ashraf, M.A. et al. Methods to convert lignocellulosic waste into biohydrogen, biogas, bioethanol, biodiesel and value-added chemicals: a review. Environ Chem Lett 21, 803–820 (2023). https://doi.org/10.1007/s10311-022-01511-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-022-01511-z

Keywords

Navigation