Skip to main content

Advertisement

Log in

Applications of enzymes in leather processing

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

The leather industry earns special attention because of its strong potential for foreign exchange earnings and employment generation prospects. This industry has developed enormously over the past decades; since, leather has become a material of choice in the world of fashion. However, this industry, like many others, is facing stringent environmental regulations worldwide, due to vast usage of toxic chemicals and generation of hazardous waste. Leather manufacturing involves conversion of raw skins and hides into leather through a series of mechanical and chemical operations. Processes like pre-tanning and tanning are known to contribute ~ 80–90% of the total pollution load in tanneries. In order to mitigate the hazards caused by toxic chemicals, enzymes have been identified as a practical alternative for use during processing and as well as for waste management. Even though the use of enzymes in the leather industry dates long back mainly because of their activity on proteins and fat, the complete replacement of chemicals by enzymes has yet to be realized. Earlier, enzymes were derived from animal excreta, and later on from the pancreas of cattle. However, currently, the enzymes are almost entirely produced by microbial fermentation. In light of this, the current review presents a holistic view on the effective utilization of enzymes in leather making, mainly during soaking, dehairing, bating and degreasing processes in order to minimize waste generation, and also in the recovery of valuable and saleable by-products. Globally, ~ 7 million tons of salted bovine hides are used every year for leather making. By using enzymes in bio-preparation, around 8 million gigajoules of energy saving and 0.7 million tons of CO2 savings is estimated to be achieved due to lower processing times and associated energy use. Nevertheless, the search for enzymes for their ultimate application in the leather industry as an eco-friendly alternative continues, since, this process is far safer and more pleasant than the traditional method. The progress made in this field during the past two decades are highlighted and will provide further insight on the scope for utilization of enzymes in this industry. In order to achieve sustainability, clean environment and prevent health hazards, the leather industry ought to adopt the use of eco-friendly alternatives which might primarily depend on research, development and implementation of the potential enzyme technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Fattah AM (2013) Novel keratinase from marine Nocardiopsis dassonvillei NRC2 aza exhibiting remarkable hide dehairing. Egypt Pharm J 12:142–147. https://doi.org/10.3126/ijasbt.v3i4.13683

    Article  CAS  Google Scholar 

  • Abdel-Fattah AM, Nashy EL-Shahat HA, Hussien MM, Attia AS, Sabiel El-Tahir A (2014) Keratinase enzyme from Cyberlindnera fabianii NRC3 aza with promising keratin-biodegradation and hide-dehairing activities. In: 5th international conference on advances in chemistry and applied chemistry (ICACAC-5)

  • Abol Fotouh DM, Bayoumi RA, Hassan MA (2016) Production of thermoalkaliphilic lipase from Geobacillus thermoleovorans DA2 and application in leather industry. Enzyme Res. https://doi.org/10.1155/2016/9034364

    Article  Google Scholar 

  • Adan A (2009) Isolation and identification of a lipase producing psychotropic bacteria from soil. Cloning and partial characterization of its lipase, pp 1–53

  • Addy VL, Covington AD, Langridge D, Watts A (2001a) Microscopy methods to study fat cells. Part 1: characterization of ovine cutaneous lipids using microscopy. J Am Leather Chem Assoc 85:6–15

    Google Scholar 

  • Addy VL, Covington AD, Langridge D, Watts A (2001b) Microscopy methods to study lipase degreasing. Part 2: a study of the interaction of ovine cutaneous adipocytes with lipase enzymes using microscopy. J Soc Leather Technol Chem 85:52–65

    CAS  Google Scholar 

  • Adigüzel AC, Bitlisli BO, Yasa I, Eriksen NT (2009) Sequential secretion of collagenolytic, elastolytic and keratinolytic proteases in peptide-limited cultures of two Bacillus cereus strains isolated from wool. J Appl Microbiol 107:226–234. https://doi.org/10.3329/bjm.v32i0.28475

    Article  Google Scholar 

  • Afsar A, Cetinkaya F (2008a) Studies on degreasing of skin by using enzyme in liming process. Indian J Chem Technol 15:507–510

    CAS  Google Scholar 

  • Afsar A, Cetinkaya F (2008b) A research on increasing the effectiveness of degreasing process by using enzymes. Tekstil ve Konfeksiyon 4:278–283

    Google Scholar 

  • Ahmad J, Ansari TA (2013) Alkaline protease production using proteinaceous tannery solid waste. J Petrol Environ Biotechnol 4:136. https://doi.org/10.4172/2157-7463.1000136

    Article  CAS  Google Scholar 

  • Ahmed MM, Gasmelseed GA (2003) Application of an enzymatic bates from local materials. J Soc Leather Technol Chem 87:135–137

    CAS  Google Scholar 

  • Ahmed SA, Al-domany RA, El-Shayeb NMA, Radwan HH, Saleh SA (2008) Optimization, immobilization of extracellular alkaline protease and characterization of its enzymatic properties. Res J Agric Biol Sci 4(5):434–446

    CAS  Google Scholar 

  • Al Mamun MA, Abir Hosain M, Ahmed S, Zohra FT, Sultana R, Murad Khan M, Akhter MZ, Nargis Khan S, Mozammel Hoq M (2015) Development of an alternative enzyme-assisted dehairing method of animal skins using proteases from Bacillus licheniformis MZK05M9. Bangladesh J Microbiol 32:33–37. https://doi.org/10.3329/bjm.v32i0.28475

    Article  Google Scholar 

  • Allpress JD, Mountain G, Gowland PC (2002) Production, purification and characterization of an extracellular keratinase from Lysobacter NCIMB 9497. Lett Appl Microbiol 34:337–342. https://doi.org/10.1046/j.1472-765x.2002.01093.x

    Article  CAS  Google Scholar 

  • Anbu P, Gopinath SCB, Hilda A, Lakshmi Priya T, Annadurai G (2005) Purification of keratinase from poultry farm isolate-Scopulariopsis brevicaulis and statistical optimization of enzyme activity. Enzyme Microb Technol 36(5–6):639–647. https://doi.org/10.1016/j.enzmictec.2004.07.019

    Article  CAS  Google Scholar 

  • Aravindhan R, Saravanabhavan S, Raghava Rao J, UnniNair B, Thanikaivelan P, Chandrasekaran B (2004) A bio-driven lime and pickle free tanning paves way for greener garment leather production. J Am Leather Chem Assoc 99:53–66

    CAS  Google Scholar 

  • Aravindhan R, Saravanabhavan S, Thanikaivelan P, Raghava Rao J, Unni Nair B (2007) A chemo-enzymatic pathway leads towards zero discharge tanning. J Clean Prod 15:1217–1227. https://doi.org/10.1016/j.jclepro.2006.07.010

    Article  Google Scholar 

  • Arunachalam C, Saritha K (2009) Protease enzyme: an eco-friendly alternative for leather industry. Indian J Sci Technol 2:29–32

    CAS  Google Scholar 

  • Bajza Z, Vrcek V (2001) Thermal and enzymatic recovering of proteins from untanned leather waste. Waste Manage 21:79–84. https://doi.org/10.1016/S0956-053X(00)00039-8

    Article  CAS  Google Scholar 

  • Binod P, Singhania RR, Soccol CR, Pandey A (2008) Industrial enzymes. In A. Pandey, C. Larroche, C.R. Soccol, C.G. Dussap (eds) Advances in fermentation technology. Asiatech Publishers, New Delhi

    Google Scholar 

  • Boopathy NR, Indhuja D, Srinivasan K, Uthirappan M, Gupta R, Ramudu KN, Chellan R (2013) Statistical medium optimization of an alkaline protease from Pseudomonas aeruginosa MTCC 10501, its characterization and application in leather processing. Indian J Exp Biol 51:336–342

    Google Scholar 

  • Brady D, Duncan JR, Rusell AE (2002) Purification of extra-cellular protease produced by Proteus vulgaris. J Am Leather Chem Assoc 78:153–156

    Google Scholar 

  • Bull AT, Marrs BL, Kurane R (1998) Biotechnology for clean industrial products and processes. Towards industrial sustainability. OECD Publications, Paris

    Google Scholar 

  • Cantera CS (2001) Hair saving unhairing process. Part 4: epidermis and the characteristics of bovine hair. J Soc Leather Technol Chem 85:1–5

    Google Scholar 

  • Chellapandi P (2010) Production and preliminary characterization of alkaline protease from Aspergillus flavus and Aspergillus terreus. Electron J Chem 7(2):479–482. https://doi.org/10.1155/2010/502583

    Article  CAS  Google Scholar 

  • Choudhary RB, Jana AK, Jha MK (2004) Enzyme technology applications in leather processing. Indian J Chem Technol 11:659–671

    CAS  Google Scholar 

  • Christner J, Pfeiderer E, Taeger T (1991) Enzyme-aided soaking process for skins and hides. U K Patent 2:233665

    Google Scholar 

  • Colak SM, Ortafidan T (2016). Eco-friendly dyeing process with enzymes. In: ICAMS 2016—6th international conference on advanced materials and systems (ICAMS)

  • Covington T (2001) Improvements in leather processing. WO 02088397 A1

  • Covington AD (2009) Curing and preservation of hides and skins. Tanning chemistry; The science of leather. RSC Publishing, Cambridge, pp 72–93

    Google Scholar 

  • Covington T (2010) Leather processing. US patent 2010/0263134 A1

  • Crispim A, Mota M (2003a) Unhairing with enzymes. J Soc Leather Technol Chem 87:198–202

    CAS  Google Scholar 

  • Crispim A, Mota M (2003b) Leather shavings treatments—an enzymatic approach. J Soc Leather Technol Chem 87:203–207

    CAS  Google Scholar 

  • Dagmar J, Karel K, Pavel M, Vladimir V (2006) Optimization of enzymatic hydrolysis of leather waste. In: Proceedings of the 6th WSEAS international conference on applied informatics and communications, Elounda, Greece, pp 345–348

  • Damhus T, Kaasgaard S, Lundquist H, Olsen HS (2008) Enzymes at work, 3rd edn. Novozymes A/S, Bagsværd

    Google Scholar 

  • Damrongsakkul S, Ratanathammapan K, KomolpisK Tanthapanichakoon W (2008) Enzymatic hydrolysis of raw hide using papain and neutrase. J Ind Eng Chem 14:202–206. https://doi.org/10.1016/j.jiec.2007.09.010

    Article  CAS  Google Scholar 

  • Dayanandan A, Kanagaraj J, Sounderraj L, Govindaraju R, Suseela Rajkumar G (2003) Application of an alkaline protease in leather processing: an eco-friendly approach. J Clean Prod 11:533–536. https://doi.org/10.1016/S0959-6526(02)00056-2

    Article  Google Scholar 

  • Dayanandan A, Hilda Vimala Rani S, Shanmugavel M, Gnanamani A, Suseela Rajakumar G (2013) Solid state bioprocessing for scale up of Aspergillus tamari MTCC5152 lipase and its degreasing effect on cow hide. Indian J Sci Technol 5:2978–2983

    Google Scholar 

  • de Sousa MF (2014) Advances in understanding of enzymatic unhairing of bovine hides. J Am Leather Chem Assoc 109:268–277

    Google Scholar 

  • de Souza FR, Gutterres M (2012) Application of enzymes in leather procession: a comparison between chemical and co-enzymatic processes. Braz J Chem Eng 29:473–481. https://doi.org/10.1590/S0104-66322012000300004

    Article  Google Scholar 

  • Dettmer A, Ayub MAZ, Gutterres M (2011) Hide unhairing and characterization of commercial enzymes used in leather manufacture. Braz J Chem Eng 28:373–380. https://doi.org/10.1590/S0104-66322011000300003

    Article  CAS  Google Scholar 

  • Dettmer A, Cavalli E, Ayub MAZ, Gutterres M (2012) Optimization of the unhairing leather processing with enzymes and the evaluation of inter-fibrillary proteins removal: an environment-friendly alternative. Bioprocess Biosyst Eng 35(8):1317–1324. https://doi.org/10.1007/s00449-012-0719-z

    Article  CAS  Google Scholar 

  • Dettmer A, Anjos PCD, Gutterres M (2013a) Special review paper: enzymes in the leather industry. J Am Leather Chem Assoc 108:146–158

    CAS  Google Scholar 

  • Dettmer A, Cavalli E, Ayub MAZ, Gutterres M (2013b) Environmentally friendly hide unhairing: enzymatic hide processing for the replacement of sodium sulfide and deliming. J Clean Prod 47:11–18. https://doi.org/10.1016/j.jclepro.2012.04.024

    Article  CAS  Google Scholar 

  • Dhar SC (1974) Production and application of enzymes in the pretanning process of leather manufacture. Leather Sci 2:39–47

    Google Scholar 

  • Ding H, Sun L, Liang C (2005) Action of pancreatin on residual epidermis of goatskin– examination via histological changes during bating. J Soc Leather Technol Chem 89:141–144

    CAS  Google Scholar 

  • Dipak Kumar S, Suman Kumar H, Hrudayanath T, Pradeep Kumar DM (2016) Potentiality of Bacillus weihenstephanensis PKD5 keratinase for eco-friendly dehairing of skins and hide. Biotechnol J 12(12):119

    Google Scholar 

  • Dutta SS (1999) Introduction to the principle of leather manufacture. Indian Leather Technol Assoc, Calcutta

    Google Scholar 

  • Fang Z, Yong YC, Zhang J, Du G, Chen J (2017) Keratinolytic protease: a green biocatalyst for leather industry. Appl Microbiol Biotechnol 101:7771–7779. https://doi.org/10.1007/s00253-017-8484-1

    Article  CAS  Google Scholar 

  • Foroughi F, Keshavarz T, Evans CS (2006) Specificities of proteases for use in leather manufacture. J Chem Technol Biotechnol 81:257–261. https://doi.org/10.1002/jctb.1367

    Article  CAS  Google Scholar 

  • Galante YM, Formantici C (2003) Enzyme applications in detergency and in manufacturing industries. Curr Org Chem 7:1399–1422. https://doi.org/10.2174/1385272033486468

    Article  CAS  Google Scholar 

  • Ganesh Kumar A, Swarnalatha S, Sairam B, Sekaran G (2008) Production of alkaline protease by Pseudomonas aeruginosa using proteinaceous solid waste generated from leather manufacturing industries. Bioresour Technol 99:1939–1944. https://doi.org/10.1016/j.biortech.2007.03.025

    Article  CAS  Google Scholar 

  • Ganesh Kumar A, Venkatesan R, Prasad Rao B, Swarnalatha S, Sekaran G (2009) Utilization of tannery solid waste for protease production by Synergistes sp. in solid-state fermentation and partial protease characterization. Eng Life Sci 9(1):66–73. https://doi.org/10.1002/elsc.200700040

    Article  CAS  Google Scholar 

  • Gehring A, DiMaio GL, Marmer WN, Mazenko CE (2002) Unhairing with proteolytic enzymes derived from Streptomyces griseus. J Soc Leather Technol Chem Assoc 91:406–411

    Google Scholar 

  • George N, Chauhan PK, Kumar V, Puri N, Gupta N (2014) Approach to eco-friendly leather: characterization and application of an alkaline protease for chemical free dehairing of skins and hides at pilot scale. J Clean Prod 79:249–257. https://doi.org/10.1016/j.jclepro.2014.05.046

    Article  CAS  Google Scholar 

  • Ghori MI, Iqbal MJ, Hameed A (2011) Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes. Braz J Microbiol 42:22–29. https://doi.org/10.1590/S1517-83822011000100003

    Article  CAS  Google Scholar 

  • Giongo JL, Lucas FS, Casarin F, Heeb P, Brandelli A (2007) Keratinolytic proteases of Bacillus species isolated from the Amazon basin showing remarkable de-hairing activity. World J Microbiol Biotechnol 23:375–382. https://doi.org/10.1007/s11274-006-9234-1

    Article  CAS  Google Scholar 

  • Guleria S, Walia A, Chauhan A, Shirkot CK (2016) Purification and characterization of detergent stable alkaline protease from Bacillus amyloliquefaciens SP1 isolated from apple rhizosphere. J Basic Microbiol 56:138–152. https://doi.org/10.1002/jobm.201500341

    Article  CAS  Google Scholar 

  • Gunavadhi M, Mohammad Jamal AZ, Jayakumar GC, Khambhaty Y, Sreeram KJ, Raghava Rao J (2016) A novel approach to enzymatic unhairing and fiber opening of skin using enzymes immobilized on magnetite nanoparticles. ACS Sustain Chem Eng 4(3):828–834. https://doi.org/10.1021/acssuschemeng.5b00869

    Article  CAS  Google Scholar 

  • Gunavadhi M, Khambhaty Y, Sreeram KJ (2019) Protease immobilized nanoparticles: a cleaner and sustainable approach to dehairing of skin. Appl Nanosci. https://doi.org/10.1007/s13204-019-01113-2

    Article  Google Scholar 

  • Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70:21–33. https://doi.org/10.1007/s00253-005-0239-8

    Article  CAS  Google Scholar 

  • Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32. https://doi.org/10.1007/s00253-002-0975-y

    Article  CAS  Google Scholar 

  • Gupta RK, Prasad D, Sathesh J, Naidu RB, Kamini NR, Palanivel S, Gowthaman MK (2012) Scale-Up of an alkaline protease from Bacillus pumilus MTCC 7514 utilizing fish meal as a sole source of nutrients. J Microbiol Biotechnol 22(9):1230–1236. https://doi.org/10.4014/jmb.1203.03021

    Article  CAS  Google Scholar 

  • Haddar A, Hmidet N, Ghorbel-Bellaaj O, Fakhfakh-Zouari N, Sellami-Kamoun A, Nasri M (2011) Alkaline proteases produced by Bacillus licheniformis RP1 grown on shrimp wastes: application in chitin extraction, chicken feather degradation and as a dehairing agent. Biotechnol Bioprocess Eng 16:669–678. https://doi.org/10.1007/s12257-010-0410-7

    Article  CAS  Google Scholar 

  • Haile G, Babiye B (2018) Extraction of protease under solid state fermentation using bacterial isolates from traditional leather processing waste water found around Wukro Maray. Biosci Biotech Res Asia 15(3):509–515. https://doi.org/10.13005/bbra/2656

    Article  Google Scholar 

  • Haile G, Gessesse A (2012) Properties of alkaline protease C45 produced by alkaliphilic Bacillus sp. isolated from Chitu, Ethiopian Soda Lake. Biotechnol Biomater 2:1–4. https://doi.org/10.4172/2155-952x.1000136

    Article  Google Scholar 

  • Hakim A, Bhuiyan FR, Iqbal A, Emon TH, Ahmed J, Azad AK (2018) Production and partial characterization of dehairing alkaline protease from Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 by using organic municipal solid wastes. Heliyon 4:00646. https://doi.org/10.1016/j.heliyon.2018.e00646

    Article  Google Scholar 

  • Hameed A, Natt MA, Evans CS (1996) Production of alkaline protease by a new Bacillus subtilis isolate for use as a bating enzyme in leather treatment. World J Microbiol Biotechnol 12:289–291. https://doi.org/10.1007/BF00360930

    Article  CAS  Google Scholar 

  • Hamza TA (2017) Studies on animal skin dehairing by alkaline protease produced from bacteria, isolated from soil. Int J Sci Technol Res 6:34–39

    Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microbiol Technol 39:235–251. https://doi.org/10.1016/j.enzmictec.2005.10.016

    Article  CAS  Google Scholar 

  • He Q, Yao K, Sun D, Shi B (2006) Biodegradability of wastewater from enzymatic soaking and unhairing processes in leather manufacture. J Am Leather Chem Assoc 101:217–222

    CAS  Google Scholar 

  • Hervas FF, Celma P, PuntiI Cisa J, Cot J, Marsal A, Manich A (2007) The enzyme activity of trypsin on sheep skin trimmings in a two-step collagen extraction process. J Am Leather Chem Assoc 102:1–9

    CAS  Google Scholar 

  • Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications: an overview. Appl Biochem Biotechnol 118:155–170. https://doi.org/10.1385/ABAB:118:1-3:155

    Article  CAS  Google Scholar 

  • http://www.biowise.org.uk/docs/2000/publications/leather.pdf#search=’lipases%20in%20leather%20industry

  • Huang Q, Peng Y, Li X, Way H, Zhang Y (2003) Purification and characterization of an extracellular alkaline serine protease with dehairing function for Bacillus pumilus. Curr Microbiol 46:169–173. https://doi.org/10.1007/s00284-002-3850-2

    Article  CAS  Google Scholar 

  • Ibrahim SK, Muniyandi J, Karutha Pandian S (2011) Purification and characterization of manganese dependent alkaline serine protease from B. pumilus TMS55. J Microbiol Biotechnol 21:20–27. https://doi.org/10.4014/jmb.1009.09001

    Article  CAS  Google Scholar 

  • Inayat A, Khan SR, Chaudhary MN, Iqbal A (2013) Application of enzymatic bating agent on leather. Pak J Ind Res Ser A: Phy Sci 56(3):180–182

    CAS  Google Scholar 

  • Janacova D, Kolomaznik K, Mokrejs P, Vasek V (2006) Optimization of enzymatic hydrolysis of leather waste. In: Proceedings of the 6th WSEAS international conference on applied informatics and communications, Elounda, Greece, 18–20 August, pp 345–348

  • Jaouadi NZ, Rekik H, Badis A, Trabelsi S, Belhoul M, Yahiaoui AB, Aicha HB, Toumi A, Bejar S, Jaouad B (2013) Biochemical and molecular characterization of a serine keratinase from Brevibacillus brevis US575 with promising keratin biodegradation and hide dehairing activities. PLoS ONE 8(10):e76722. https://doi.org/10.1371/journal.pone.0076722

    Article  CAS  Google Scholar 

  • Jatavathu M, Jatavathu S, Raghavendra Rao MV, Sambasiva Rao KRS (2011) Efficient leather dehairing by bacterial thermostable protease. Int J BioSci Biotechnol 3:11–26

    Google Scholar 

  • Jayakumar R, Jayashree S, Annapurna B, Seshadri S (2012) Characterization of thermostable serine alkaline protease from an alkaliphilic strain Bacillus pumilus MCAS8 and its applications. Appl Biochem Biotechnol 168:1849–1866. https://doi.org/10.1007/s12010-012-9902-6

    Article  CAS  Google Scholar 

  • Jayakumar GC, Karthik V, AsanFathima AD, Tamil Selvi A, Muralidharan C, Kanth SV (2019) High exhaustion system (HES) for leather process: role of Biocatalyst as an exhaustive aid for wet-end. In: XXXVth IULTCS congress, Dreseden, Germany

  • Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production: a literature review. J Clean Prod 42:228–240. https://doi.org/10.1016/j.jclepro.2012.11.005

    Article  CAS  Google Scholar 

  • Jian S, Wenyi T, Wuyong C (2011) Kinetics of enzymatic unhairing by protease in leather industry. J Clean Prod 19:325–331. https://doi.org/10.1016/j.jclepro.2010.10.011

    Article  CAS  Google Scholar 

  • Kamini NR, Hemachander C, Geraldine Sandana MJ, Puvanakrishnan R (1999) Microbial enzyme technology as an alternative to conventional chemicals in leather industry. Curr Sci 77:80–86

    CAS  Google Scholar 

  • Kanagaraj J (2009) Cleaner leather processing by using enzymes: a review. Adv Biotechnol 9:13–18

    Google Scholar 

  • Kanagaraj J, Velappan KC, Chandra Babu NK, Sadulla S (2006) Solid wastes generation in the leather industry and its utilization for cleaner environment—a review. J Sci Ind Res 65:541–548. https://doi.org/10.1002/chin.200649273

    Article  CAS  Google Scholar 

  • Kanth SV, Venba R, Madhan B, Jawahar M, Chitra P, Yasothai A, Chandrababu NK, Sadulla S (2006a) Studies on the influence of proteolytic enzymes in leather dyeing. J Am Leather Chem Assoc 101:435–443

    CAS  Google Scholar 

  • Kanth SV, Venba R, Madhan B, Chandrababu NK, Sadulfla S (2006b) Studies on the influence of bacterial collagenase in leather dyeing. Dyes Pigments 76:338–347. https://doi.org/10.1016/j.dyepig.2006.08.043

    Article  CAS  Google Scholar 

  • Kanth SV, Venba R, Madhan B, Chandrababu NK, Sadulla S (2009) Cleaner tanning practices for tannery pollution abatement: role of enzymes in eco friendly vegetable tanning. J Clean Prod 17:507–515. https://doi.org/10.1016/j.jclepro.2008.08.021

    Article  CAS  Google Scholar 

  • Khan P (2013) New microbial proteases in leather and detergent industries. Innov Res Chem 1:1–6. https://doi.org/10.1111/irc.v1i1.17

    Article  CAS  Google Scholar 

  • Khandelwal HB, More SV, Kalal KM, Seeta Laxman R (2015) Eco-friendly enzymatic dehairing of skins and hides by C. brefeldianus protease. Clean Technol Environ 17:393–405. https://doi.org/10.1007/s10098-014-0791-y

    Article  CAS  Google Scholar 

  • Kupec J, Dvorackova M, Rudlova S, Ruicka J, Kolomaznik K (2002) Deproteination of chrome waste by washing and enzymatic hydrolysis. J Am Leather Chem Assoc 97:349–354

    CAS  Google Scholar 

  • Lars R, Xu Q, Pedersen NK, ZhouZ (2008) An enzymatic treatment of skin and hide degreasing. World Patent WO/2008/122640

  • Lateef A, Adelerea IA, Gueguim-Kana EB (2012) Bacillus safensis LAU 13: a new source of keratinase and its multi-functional biocatalytic applications. Biotechnol Biotechnol Equip 29(1):54–63. https://doi.org/10.1080/13102818.2014.986360

    Article  CAS  Google Scholar 

  • Laxman RS, More SV, Rele MV, Rao BSR, Jogdand VV, Rao MB, Deshpande VV, Naidu RB, Manikandan P, Kumar DA, Kanagaraj J, Samayavaram R, Samivelu N, Rengarajulu P (2004) Process for the preparation of alkaline protease. US patent 6777219 B2

  • Lyu B, Cheng K, Ma J, Hou X, Gao D, Gao H, Zhang J, Qi Y (2017) A cleaning and efficient approach to improve wet-blue sheep leather quality by enzymatic degreasing. J Clean Prod 148:701–708. https://doi.org/10.1016/j.jclepro.2017.01.170

    Article  CAS  Google Scholar 

  • Ma J, Hou X, Gao D, Lv B, Zhang J (2014) Greener approach to efficient leather soaking process: role of enzymes and their synergistic effect. J Clean Prod 78:226–232. https://doi.org/10.1016/j.jclepro.2014.04.058

    Article  CAS  Google Scholar 

  • Macedo AJ, Silva WOB, Gava R, Driemeier D, Henriques JAP, Termignoni C (2005) Novel keratinase from Bacillus subtilisS14 exhibiting remarkable dehairing capabilities. Appl Environ Microbiol 71:594–596. https://doi.org/10.1128/AEM.71.1.594-596.2005

    Article  CAS  Google Scholar 

  • Madhumathi M, Cheerla S, Sarvanabhavan S, Thanikaivelan P, RaghavaRao J, Chandra Babu NK, Unni Nair B (2007) Factors influencing activity of enzymes and their kinetics. Appl Biochem Biotechnol 136:265–278. https://doi.org/10.1007/s12010-007-9025-7

    Article  CAS  Google Scholar 

  • Mhya DH, Mankilik M (2015) Bacterial Enzymes: a good alternative to conventional chemicals in leather processing. Int J Biosci Nanosci 2(1):20–23

    Google Scholar 

  • More SY, Bholay AD, Nalawade PM (2017) Eco-friendly applications of bacterial extracellular alkaline protease. IOSR J Environ Sci Toxic Food Technol 11(4):81–87. https://doi.org/10.9790/2402-1104018187

    Article  CAS  Google Scholar 

  • Mozersky SM, Allen OD, Marmer WN (2002) Vigorous proteolysis: re-liming in the presence of alkaline protease and bating (post–liming) with an extremophile protease. J Am Leather Chem Assoc 97:150–156

    CAS  Google Scholar 

  • Mozersky SM, Wildermuth RJ, Marmer WN (2005) The relative proteolytic activities of pancreatic bate in media of low and high salt content. J Am Leather Chem Assoc 100:396–400

    CAS  Google Scholar 

  • Mukesh Kumar DJ, Rajan R, Lawernce L, Priyadarshini S, Chittybaby S, Kalaichelvan PT (2012) Destaining and dehairing capability of partially purified Bacillus subtilis protease from optimized fermentation medium. Asian J Exp Biol Sci 3(3):613–620

    Google Scholar 

  • Mukhtar H, Haq I (2008) Production of alkaline protease by Bacillus subtilis and its application as a depilating agent in leather processing. Pak J Bot 40:1673–1679

    CAS  Google Scholar 

  • Muthukumaran N, Dhar SC (1982) Comparative studies on the degreasing of skins using acid lipase and solvent with reference to the quality of finished leathers. Leather Sci 29:417–424

    CAS  Google Scholar 

  • Muthuprakash SKM, Abraham J (2011) A comparative analysis of protease producing microbes isolated from tannery effluent. Intl J Sci Nat 2:110–113

    Google Scholar 

  • Nadeem M, Qazi JI, Baig S (2010) Enhanced production of alkaline protease by a mutant of Bacillus licheniformis N-2 for dehairing. Braz Arch Biol Technol 53:1015–1025. https://doi.org/10.1590/S1516-89132010000500003

    Article  Google Scholar 

  • Najafi NF (2005) Potential application of protease isolated from Pseudomonas aeruginosa PD100. Eletron J Biotechnol 8:197–203. https://doi.org/10.2225/vol8-issue2-fulltext-5

    Article  CAS  Google Scholar 

  • Namo FM (2018) Production optimization and characterization of alkaline protease from bacteria strains for skin dehairing. Int J Sci Eng Res 9(7):1661–1684

    Google Scholar 

  • Nashy EHA, Ismail SA, AhmadyAM El-Fadaly H, El-Sayed NH (2005) Enzymatic bacterial dehairing of bovine hide by a locally isolated strain of Bacillus licheniformis. J Soc Leather Technol Chem 89:242–249

    CAS  Google Scholar 

  • Nielson PH (2006) Environmental assessment of enzyme application in the tanning industry. Enzyme Technol Leather Int August/September:18–24

  • Nilegaonkar SS, Zambare VP, Kanekar PP, Dhakephalkar PK, Sarnaik SS (2007) Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326. Bioresour Technol 98:1238–1245. https://doi.org/10.1016/j.biortech.2006.05.003

    Article  CAS  Google Scholar 

  • Novozymes, Denmark. http://www.novozymes.com/library/Downloads/Productsandsolutions/textile/2001.22607.pdf#search=’lipases%20in%20leather%20industry

  • Ogino H, Otsubo T, Ishikawa H (2008) Screening, purification, and characterization of a leather-degrading protease. Bio chem Eng J 38:234–240. https://doi.org/10.1016/j.bej.2007.07.008

    Article  CAS  Google Scholar 

  • Pandeeti EVP, Pitchika GK, Jotshi J, Nilegaonkar SS, Kanekar PP, Siddavattam D (2011) Enzymatic depilation of animal hide: identification of elastase (LasB) from Pseudomonas aeruginosa MCM B-327 as a depilating protease. PLoS ONE 6:16742. https://doi.org/10.1371/journal.pone.0016742

    Article  CAS  Google Scholar 

  • Parvinzadeh M (2007) Effect of proteolytic enzyme on dyeing of wool with madder. Enzyme Microb Technol 40:4. https://doi.org/10.1016/j.enzmictec.2006.10.026

    Article  CAS  Google Scholar 

  • Paul RG, Mohamed I, Davighi D, Covington AD, Addy VL (2001) The use of neutral protease in enzymatic unhairing. J Am Leather Chem Assoc 96:180–185

    CAS  Google Scholar 

  • Paul T, Das A, Mandal A, Jana A, MaityC Adak A, Halder SK, Das Mohapatra PK, Pati BR, Mondal KC (2013) Effective dehairing properties of keratinase from Paenibacillus woosongensis TKB2 obtained under solid state fermentation. Waste Biomass Valorif 5:97–107. https://doi.org/10.1007/s12649-013-9217-z

    Article  CAS  Google Scholar 

  • Pelckmans JT, Fennen J, Christner J (2008) Advances in the degreasing of hides. World Leather August:31–33

  • Pillai P, Archana G (2008) Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Appl Microbiol Biotechnol 78:643–650. https://doi.org/10.1007/s00253-008-1355-z

    Article  CAS  Google Scholar 

  • Prakash P, Jayalakshmi SK, Sreeramulu K (2010) Production of keratinase by free and immobilized cells of Bacillus halodurans strain PPKS-2: partial characterization and its application in feather degradation and dehairing of the goat skin. Appl Biochem Biotechnol 160:1909–1920. https://doi.org/10.1007/s12010-009-8702-0

    Article  CAS  Google Scholar 

  • Priya S, Rajaram A, Rajaram R, Ramasami T (2008) Depilation of skins by pure enzymes. J Soc Leather Technol Chem 92:214–221

    CAS  Google Scholar 

  • Puvanakrishnan R, Sivasubramanian S, Hemlatha T (2012) Microbial technology: concepts and applications. MJP Publishers, Chennai

    Google Scholar 

  • Puvankrishanan R (2003) Microbial enzyme technology in leather industry. Adv Biotech 4:17–18

    Google Scholar 

  • Rahman MS, Islam MR, Mondol OK, Rahman MS, Sabrin F, Zohora US (2018) Screening of protease producing bacteria from tannery wastes of leather processing industries at Hazaribag, Bangladesh. J Biol Sci 7(1):23–34. https://doi.org/10.3329/jujbs.v7i1.37970

    Article  Google Scholar 

  • Rajkumar R, Jayappriyan KR, Rengasamy R (2011) Purification and characterization of a protease produced by Bacillus megaterium RRM2: application in detergent and dehairing industries. J Basic Microbiol 51:614–624. https://doi.org/10.1002/jobm.201000517

    Article  CAS  Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol R 62:597

    Article  CAS  Google Scholar 

  • Rasmussen L (2002) Wet blue enzymes–new treatment for area gain. World Leather 15(1):44–45

    Google Scholar 

  • Ravindran B, Ganesh Kumar A, ArunaBhavani PS, Sekaran G (2011) Solid-state fermentation for the production of alkaline protease by Bacillus cereus 1173900 using proteinaceous tannery solid waste. Curr Sci 100950:726–730

    Google Scholar 

  • Ravishankar K, Ashok kumar M, Saravanan K (2012) Isolation of alkaline protease from Bacillus subtilis AKRS3. Afr J Biotechnol 11(69):13415–13427. https://doi.org/10.5897/AJB12.404

    Article  CAS  Google Scholar 

  • Rehman R, Ahmed M, Siddique A, Hasan F, Hameed A, Jamal A (2017) Catalytic role of thermostable metalloproteases from Bacillus subtilis KT004404 as dehairing and destaining agent. Appl Biochem Biotechnol 181:434–450. https://doi.org/10.1007/s12010-016-2222-5

    Article  CAS  Google Scholar 

  • Renganath Rao R, Muralidharan V, Saravanan P (2018) Preparation and application of unhairing enzyme using solid wastes from the leather industry—an attempt toward internalization of solid wastes within the leather industry. Environ Sci Pollut Res 25:2121–2136. https://doi.org/10.1007/s11356-017-0550-9

    Article  CAS  Google Scholar 

  • Ricker M (2001) What’s new in leather chemicals? Leather 203:3–8

    Google Scholar 

  • Riffel A, Ortolan S, Brandelli A (2003) Dehairing activity of extracellular proteases produced by keratinolytic bacteria. J Chem Technol Biotechnol 78:855–859. https://doi.org/10.1002/jctb.828

    Article  CAS  Google Scholar 

  • Rohm O (1910) Dehairing and cleaning of skins. German Patent 268:837

    Google Scholar 

  • Rose C, Suguna L, Rahini R, Samivelu N, Rathinasamy V, Kuttalam I, Ramasami T (2007) Process for lime and sulphide free unhairing of skins and hides using animal and/or plant enzymes. US patent 7198647 l

  • Sangeetha R, Geetha A, Arulpandi I (2010) Concomitant production of protease and lipase by Bacillus licheniformis VSG1: production, purification and characterization. Braz J Microbiol 41:179–185. https://doi.org/10.1590/S1517-838220100001000026

    Article  CAS  Google Scholar 

  • Saravanabhavan S, Aravindhan R, Thanikaivelan P, Chandrasekaran B, Rao JR, Nair BU (2003a) An integrated eco-friendly tanning method for the manufacture of upper leathers from goatskins. J Soc Leather Technol Chem 87(4):149–158

    CAS  Google Scholar 

  • Saravanabhavan S, Aravindhan R, Thanikaivelan P, Raghava Rao J, Unni Nair B (2003b) Green solution for tannery pollution: effect of enzyme lime-free unhairing and fiber opening in combination with pickle-free chrome tanning. Green Chem 5:707–714. https://doi.org/10.1039/b305285k

    Article  CAS  Google Scholar 

  • Saravanabhavan S, Aravindhan R, Thanikaivelan P, Raghava Rao J, Unni Nair B, Ramasami T (2005a) A source reduction approach: integrated bio-based tanning methods and role of enzymes in dehairing and fiber opening. Clean Technol Environ Policy 7:3–14. https://doi.org/10.1007/s10098-004-0251-1

    Article  CAS  Google Scholar 

  • Saravanabhavan S, Thanikaivelan P, Raghava Rao J, Unni Nair B, Ramasami T (2005b) Dehairing and fiber opening process for complete elimination of lime and sodium sulfide. US Patent 6957554

  • Saravanabhavan S, Thanikaivelan P, Rao JR, Unni Nair B (2005c) Silicate enhanced enzymatic dehairing: a new lime-sulfide-free process for cowhides. Environ Sci Technol 39(10):3776–3783. https://doi.org/10.1021/es048770o

    Article  CAS  Google Scholar 

  • Saravanan P, Shiny Renitha T, Gowthaman MK, Kamini NR (2014) Understanding the chemical free enzyme based cleaner unhairing process in leather manufacturing. J Clean Prod 79:258–264. https://doi.org/10.1016/j.jclepro.2014.05.022

    Article  CAS  Google Scholar 

  • Sarrouh B, Santos TM, Miyoshi A, Dias R, Azevedo V (2012) Up-to-date insight on industrial enzymes applications and global market. J Bioprocess Biotech 2(S4):002. https://doi.org/10.4172/2155-9821.S4-002

    Article  Google Scholar 

  • Sathiya G (2013) Production of protease from Bacillus subtilis and its application in leather making process. Intl J Res Biotechnol Biochem 3:7–10

    Google Scholar 

  • Seitz EW (1974) Industrial applications of microbial lipases-a review. J Am Oil Chem Soc 51:12–16. https://doi.org/10.1007/bf02545206

    Article  CAS  Google Scholar 

  • Senthil Kumar P, Sounder Raj L, Sivakumar K, Rajakumar S (2012) Enzymatic hydrolyses of chrome shaving waste from tannery through Aspergillus tamerii. J Biol Environ Sci 6:285–292

    Google Scholar 

  • Senthilvelan T, Kanagaraj J, Mandal AB (2012) Application of enzymes for dehairing of skins: cleaner leather processing. Clean Technol Environ Policy 14:889–897. https://doi.org/10.1007/s10098-012-0458-5

    Article  CAS  Google Scholar 

  • Shah M, Vaidya R (2017) Partial characterization of keratinase from Stenotrophomonas maltophilia K279a and study of its dehairing potential. Intl J Biotechnol Biochem 13(1):95–110

    Google Scholar 

  • Shaon RC (2012) Hide processing methods and compositions. WIPO Patent WO/2012/017264

  • Shimizu Y, Sugiyama A, Ohta A (2005) Enzymatic unhairing agent for use in tanning for producing leather and method for enzymatic unhairing treatment. US Patent 6867032 B2

  • Shivasharana CT, Naik GR (2012) Ecofriendly applications of thermostable alkaline protease produced from a Bacillus sp. JB-99 under solid state fermentation. Int J Environ Sci 3(3):956–964. https://doi.org/10.6088/ijes.2012030133003

    Article  CAS  Google Scholar 

  • Shrewsbury C (2002) Biotechnology for improved product quality. World Leather February:40–42

  • Shrinivas D, Naik GR (2011) Characterization of alkaline thermostable keratinolytic protease from thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity. Int Biodeterior Biodegrad 65(1):29–35. https://doi.org/10.1016/j.ibiod.2010.04.013

    Article  CAS  Google Scholar 

  • Sirvaityte J, Valeika V, Beleska K, Valeikiene V (2006) Bating of pelts after deliming with peracetic acid. Proc Estonian Aca Sci Chem 55:93–100

    CAS  Google Scholar 

  • Sivakumar V, Kumar D, Kumar R, Kumar R (2012) Leather bioprocess intensification: ultrasound assisted novel enzymatic hair- loosening system for leather processing. Indian J Biotechnol 11:326–329

    CAS  Google Scholar 

  • Sivasubramanian S, Manohar BM, Rajaram A, Puvanakrishnan R (2008a) Ecofriendly lime and sulfide free enzymatic dehairing of skins and hides using a bacterial alkaline protease. Chemosphere 70:1015–1024. https://doi.org/10.1016/j.chemosphere.2007.09.036

    Article  CAS  Google Scholar 

  • Sivasubramanian S, Murali MB, Puvanakrishnan R (2008b) Mechanism of enzymatic dehairing of skins using a bacterial alkaline protease. Chemosphere 70:1025–1034. https://doi.org/10.1016/j.chemosphere.2007.07.084

    Article  CAS  Google Scholar 

  • Soerensen NH, Hoff T, Oestergaard PR, Cassland P (2013) Dehairing of skins and hides. US Patent 201330102058 A1

  • Subba Rao Ch, Sathish T, Ravichandra P, Prakasham RS (2009) Characterization of thermo and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem 44:262–268. https://doi.org/10.1016/j.procbio.2008.10.022

    Article  CAS  Google Scholar 

  • Suharti S, Riesmi MT, Hidayati A, Zuhriyah UF, Wonorahardjo S, Susanti E (2018) Enzymatic dehairing of goat skin using keratinase from Bacillus sp. MD24, A newly isolated soil bacterium. Pertanika J Trop Agric Sci 41(3):1449–1461

    Google Scholar 

  • Sundar VJ, Gnanamani A, Muralidharan C, Chandrababu NK, Mandal AB (2011) Recovery and utilization of proteinous wastes of leather making: a review. Rev Environ Sci Biol 10:151–163. https://doi.org/10.1007/s11157-010-9223-6

    Article  Google Scholar 

  • Sundararajan S, Kannan CN, Chittibabu S (2011) Alkaline protease from Bacillus cereus VITSN04. Potential application as a dehairing agent. J Biosci Bioeng 111:128–133. https://doi.org/10.1016/j.jbiosc.2010.09.009

    Article  CAS  Google Scholar 

  • Tang XM, Lakay FM, Shen W, Shao WL, Fang HY, Prior BA, Wang ZX, Zhuge J (2004) Purification and characterization of an alkaline protease used in tannery industry from Bacillus licheniformis. Biotechnol Lett 26:1421–1424. https://doi.org/10.1023/B:BILE.0000045642.19299.3f

    Article  CAS  Google Scholar 

  • Taylor MM, Bailey DG, Feairheller SH (1987) A review of uses of enzymes in the tannery. J Am Leather Chem Assoc 82:153–165

    CAS  Google Scholar 

  • Teles FRR, Cabral JMS, Santos JAL (2001) Enzymatic degreasing of a solid waste from the leather industry by lipases. Biotechnol Lett 23:1159–1163. https://doi.org/10.1023/A:1010596206857

    Article  CAS  Google Scholar 

  • Thangam EB, Nagarajan T, SuseelaRajkumar G, Chandrababu NK (2001) Application of alkaline protease isolated from Alcaligenesfaecalis for enzymatic unhairing in tanneries. J Indian Leather Technol Assoc 37:215–222

    Google Scholar 

  • Thanikaivelan P, Rao JR, Nair BU (2000) Development of a leather processing method in narrow pH profile: part 1. Standardization of dehairing process. J Soc Leather Technol Chem 84:276–284

    CAS  Google Scholar 

  • Thanikaivelan P, Rao JR, Nair BU (2001) Development of a leather processing method in narrow pH profile. Part 2. Standardisation of tanning process. J Soc Leather Technol Chem 85:106–115

    Google Scholar 

  • Thanikaivelan P, Raghava Rao J, Unni Nair B, Ramasami T (2002) Zero discharge tanning: a shift from chemical to biocatalytic leather processing. Environ Sci Technol 36:4187–4194. https://doi.org/10.1021/es025618i

    Article  CAS  Google Scholar 

  • Thanikaivelan P, Raghava Rao J, Unni Nair B, Ramasami T (2003) Biointervention makes leather processing greener: an integrated cleansing and tanning system. Environ Sci Technol 37(11):2609–2617. https://doi.org/10.1021/es026474a

    Article  CAS  Google Scholar 

  • Thanikaivelan P, RaghavaRao J, Unni Nair B, Ramasami T (2004a) Progress and recent trends in biotechnological methods for leather processing. Trends Biotechnol 22:181–188. https://doi.org/10.1016/j.tibtech.2004.02.008

    Article  CAS  Google Scholar 

  • Thanikaivelan P, RaghavaRao J, Unni Nair B, Ramasami T (2004b) Eco-friendly bio-process for leather processing. US Patent No. 6,708,531 B1

  • Thanikaivelan P, Saravanabhavan S, Chandrasekaran B, Rao JR, Nair BU, Ramasami T (2005) A novel single step process for dehairing and fiber opening using enzymes. Patents in India and PCT Countries

  • Thanikaivelan P, Chandrasekaran B, Bharath CK, Anandhi C, Saravanabhavan S, RaghavaRao J, Unni Nair B (2006) Single step hair removal and fiber opening process: simultaneous and successive addition of protease and alpha-amylase. J Am Leather Chem Assoc 101:388–398

    CAS  Google Scholar 

  • Thanikaivelan P, Raghava Rao J, Unni Nair B, Ramasami T (2007a) Enzyme applications in leather processing: current scenario and future outlook. Enzyme Mixt Complex Biosynth 37–48

  • Thanikaivelan P, Bharath CK, Saravanabhavan S, Raghava Rao J, Chandrasekaran B, Chandrababu NK, UnniNair B (2007b) Integrated hair removal and fiber opening process using mixed enzymes. Clean Technol Environ Policy 9:61–68. https://doi.org/10.1007/s10098-006-0053-8

    Article  CAS  Google Scholar 

  • Thanikaivelan P, Sarvanabhavan S, Raghava Rao J, Chandrasekaran B, Unni Nair B, Ramasami T (2008) An improved process for dehairing and fiber opening of hide/skin. WO 2008093353 A1

  • Tiwary E, Gupta R (2010) Medium optimization for a novel 58 kDa dimeric keratinase from Bacillus licheniformis ER-15. Biochemical characterization and application in feather degradation and dehairing of hides. Bioresour Technol 101:6103–6110. https://doi.org/10.1016/j.biortech.2010.02.090

    Article  CAS  Google Scholar 

  • Uddin ME, Ahmad T, Sarkar MK, Azim DA, Rahman SS, Islam MS, Karim MR, Rahman MM, Rahman M, Islam M (2015) Microbial production of alkaline proteases and evaluation of its performances for pretreatment of leather industry. J Multidiscip Eng Sci Technol 2(12):3370–3377

    Google Scholar 

  • Valeika V, Beleska K, Valeikiene V, Kilodzeiskis V (2009) An approach to cleaner production: from hair burning to hair saving using a lime free unhairing system. J Clean Prod 17:214–221. https://doi.org/10.1016/j.jclepro.2008.04.010

    Article  CAS  Google Scholar 

  • Valeika V, Beleska K, Sirvaityte J (2012) Alkali free method of hide preparation for tanning. Braz J Chem Eng 29(2):315–323. https://doi.org/10.1590/S0104-66322012000200012

    Article  CAS  Google Scholar 

  • Verma A, Pal HS, Singh R, Agarwal S (2011) Potential of alkaline protease isolated from Thermoactinomyces sp. RM4 as an alternative to conventional chemicals in leather industry dehairing process. Intl J Agri Environ Biotechnol 4(2):173–178

    Google Scholar 

  • Vijay Kumar E, Srijana M, Kiran Kumar K, Harikrishna N, Reddy G (2011) A novel serine alkaline protease from Bacillus altitudinis GVC11and its application as a dehairing agent. Bioprocess Biosyst Eng 34:403–409. https://doi.org/10.1007/s00449-010-0483-x

    Article  CAS  Google Scholar 

  • Vijayaraghavan P, Vijayan A, ArunA Jenisha JK, Vincent SGP (2012) Cow dung: a potential biomass substrate for the production of detergent-stable dehairing protease by alkaliphilic Bacillus subtilis strain VV. Springer Plus 1:76. https://doi.org/10.1186/2193-1801-1-76

    Article  CAS  Google Scholar 

  • Wahyuntari B, Hendrawati H (2012) Properties of an extracellular protease of Bacillus megaterium DSM 319 as depilating aid of hides. Microbiology 6:77–82. https://doi.org/10.5454/mi.6.2.4

    Article  Google Scholar 

  • Wang HY, Liu DM, Liu Y, Cheng CF, Ma QY, Huang Q, Zhang YZ (2006) Screening and mutagenesis of a novel Bacillus pumilus strain producing alkaline protease for dehairing. Lett Appl Microbiol 144:1–6. https://doi.org/10.1111/j.1472-765x.2006.02039.x

    Article  Google Scholar 

  • Wang R, Min C, Haiming C, Li Z (2009) Enzyme unhairing—an eco-friendly biotechnological process. J Soc Leather Technol Chem 93:51–55

    CAS  Google Scholar 

  • Wanyonyi WC, Mulaa FJ (2019) Alkaliphilic enzymes and their application in novel leather processing technology for next-generation tanneries. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2019_95

    Article  Google Scholar 

  • Yongquan L (2001) Sheep-pelt bating with acid protease. J Am Leather Chem Assoc 96:398–400

    Google Scholar 

  • Yuan J, Fan X, Wang Q, Wang P, Cui L (2008) Modification of wool fiber with protease—1. Effect of ionic liquid pretreatment. J Biotechnol 6:3

    Article  Google Scholar 

  • Zambare VP, Nilegaonkar SS, Kanekar P (2007) Production of an alkaline protease by Bacillus cereus MCM B-326 and its application as a dehairing agent. World J Microb Biot 23:1569–1574. https://doi.org/10.1007/s11274-007-9402-y

    Article  CAS  Google Scholar 

  • Zambare SS, Nilegaonkar VP, Kanekar P (2010) Application of protease from Bacillus cereus MCM B-326 as a bating agent in leather processing. IIOAB J 1(4):18–21

    CAS  Google Scholar 

  • Zambare VP, Nilegaonkar SS, Kanekar P (2013) Protease production and enzymatic soaking of salt-preserved buffalo hides for leather processing. IIOAB Lett. https://doi.org/10.5195/iioablett.2013.19

    Article  Google Scholar 

  • Zekeya N, China C, Mbwana S, Mtambo M (2019) Dehairing of animal hides and skins by alkaline proteases of Aspergillusoryzae for efficient processing to leather products in Tanzania. Afr J Biotechnol 18(20):426–434. https://doi.org/10.5897/AJB2019.16752

    Article  CAS  Google Scholar 

  • Zhou C, Qin H, Chen X, Zhang Y, Xue Y, Ma Y (2018) A novel alkaline protease from alkaliphilic Idiomarina sp. C9-1 with potential application for eco-friendly enzymatic dehairing in the leather industry. Sci Rep 8:16467. https://doi.org/10.1038/s41598-018-34416-5

    Article  CAS  Google Scholar 

  • Zuo Q, Chen W, Hlavacek P (2009) Effect of surfactant on enzyme and skin in bating process. XXX congress of IULTCS, Beijing

    Google Scholar 

Download references

Acknowledgement

The author thanks Director, CSIR-CLRI for support and encouragement. CSIR-CLRI communication number 1163.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmin Khambhaty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khambhaty, Y. Applications of enzymes in leather processing. Environ Chem Lett 18, 747–769 (2020). https://doi.org/10.1007/s10311-020-00971-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-020-00971-5

Keywords

Navigation