Skip to main content

Advertisement

Log in

Glyphosate detection: methods, needs and challenges

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Glyphosate is considered toxicologically harmful and presents potential association with human carcinogenesis and other chronic diseases, including mental and reproductive behaviors. The challenges to analyse and demonstrate its toxicity are likely due to its metal-chelating properties, the interference of organic compounds in the environment, and similarity with its by-products. Whereas there is a link with serious health and environmental problems, there is an absence of public health policies, which is probably due to the difficulties in detecting glyphosate in the environment, further complicated by the undetectable hazard in occupational safety and health. The historical lenient use of glyphosate in transgenic-resistant crops, corroborated by the fact that it is not easily detected, creates the “Glyphosate paradox”, by which it is the most widely used herbicide and one of the most hardly determined. In this review, we revisited all available technologies for detection and quantification of glyphosate, including their drawbacks and advantages, and we further discuss the needs and challenges. Briefly, most of the technologies require high-end equipments and resources in low throughput, and none of them are adequate for real-time field tests, which may explain the lack of studies on occupational health associated with the chemical hazard. The real-time detection is an urgent and highly demanded need to improve public policies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Hamid MI (1996) Development and application of a simple procedure for toxicity testing using immobilized algae. Water Sci Technol 33:129–138

    Article  CAS  Google Scholar 

  • Alferness PL, Iwata Y (1994) Determination of glyphosate and (aminomethyl)phosphonic acid in soil, plant and animal matrixes, and water by capillary gas chromatography with mass-selective detection. J Agric Food Chem 42:2751–2759

    Article  CAS  Google Scholar 

  • Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391:1609–1618

    Article  CAS  Google Scholar 

  • Allinson G, Allinson M, Bui A et al (2016) Pesticide and trace metals in surface waters and sediments of rivers entering the Corner Inlet Marine National Park, Victoria, Australia. Environ Sci Pollut Res Int 23:5881–5891

    Article  CAS  Google Scholar 

  • Anthony S, Stephanie S (2017) Glyphosate pathways to modern diseases VI: prions, amyloidosis and autoimmune neurological diseases. J Biol Phys Chem 17:8–32

    Article  Google Scholar 

  • Antoniou M, Habib M, Howard CV et al (2012) Teratogenic effects of glyphosate-based herbicides: divergence of regulatory decisions from scientific evidence. J Environ Anal Toxicol S4:006

  • Arroyave JM, Waiman CC, Zanini GP, Avena MJ (2016) Effect of humic acid on the adsorption/desorption behavior of glyphosate on goethite. Isotherms and kinetics. Chemosphere 145:34–41

    Article  CAS  Google Scholar 

  • Barcelo D (2000) Sample handling and trace analysis of pollutants. Techniques, applications and quality assurance, vol 21, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Barrett KA, McBride MB (2005) Oxidative degradation of glyphosate and aminomethylphosphonate by manganese oxide. Environ Sci Technol 39:9223–9228

    Article  CAS  Google Scholar 

  • Bataller R, Campos I, Laguarda-Miro N et al (2012) Glyphosate detection by means of a voltammetric electronic tongue and discrimination of potential interferents. Sensors 12:17553–17568

    Article  CAS  Google Scholar 

  • Beecham JE, Seneff S (2015) The possible link between autism and glyphosate acting as glycine mimetic—a review of evidence from the literature with analysis. J Mol Genet Med. https://doi.org/10.4172/1747-0862.1000187

    Article  Google Scholar 

  • Benachour N, Séralini G-E (2009) Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chem Res Toxicol 22:97–105

    Article  CAS  Google Scholar 

  • Börjesson E, Torstensson L (2000) New methods for determination of glyphosate and (aminomethyl)phosphonic acid in water and soil. J Chromatogr A 886:207–216

    Article  Google Scholar 

  • Bradley PM, Journey CA, Romanok KM et al (2017) Expanded target-chemical analysis reveals extensive mixed-organic-contaminant exposure in U.S. streams. Environ Sci Technol 51:4792–4802

    Article  CAS  Google Scholar 

  • Brłnstad JO, Friestad HO (1976) Method for determination of glyphosate residues in natural waters based on polarography of the N-nitroso derivative. Analyst 101:820–824

    Article  Google Scholar 

  • Byer JD, Struger J, Klawunn P et al (2008) Low cost monitoring of glyphosate in surface waters using the ELISA method: an evaluation. Environ Sci Technol 42:6052–6057

    Article  CAS  Google Scholar 

  • Campanella L, Cubadda F, Sammartino MP, Saoncella A (2001) An algal biosensor for the monitoring of water toxicity in estuarine environments. Water Res 35:69–76

    Article  CAS  Google Scholar 

  • Candela L, Caballero J, Ronen D (2010) Glyphosate transport through weathered granite soils under irrigated and non-irrigated conditions—Barcelona, Spain. Sci Total Environ 408:2509–2516

    Article  CAS  Google Scholar 

  • Cartigny B, Azaroual N, Imbenotte M et al (2004) Determination of glyphosate in biological fluids by 1H and 31P NMR spectroscopy. Forensic Sci Int 143:141–145

    Article  CAS  Google Scholar 

  • Castle LA, Siehl DL, Gorton R et al (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304:1151–1154

    Article  CAS  Google Scholar 

  • Cattani D, de Liz Oliveira Cavalli VL, Heinz Rieg CE et al (2014) Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: involvement of glutamate excitotoxicity. Toxicology 320:34–45

    Article  CAS  Google Scholar 

  • Cavalcante DGSM, Martinez CBR, Sofia SH (2008) Genotoxic effects of Roundup® on the fish Prochilodus lineatus. Mutat Res Genet Toxicol Environ Mutagen 655:41–46

    Article  CAS  Google Scholar 

  • Cavaş T, Könen S (2007) Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis 22:263–268

    Article  CAS  Google Scholar 

  • Çetin E, Şahan S, Ülgen A, Şahin U (2017) DLLME-spectrophotometric determination of glyphosate residue in legumes. Food Chem 230:567–571

    Article  CAS  Google Scholar 

  • Chalubinski M, Kowalski ML (2006) Endocrine disrupters–potential modulators of the immune system and allergic response. Allergy 61:1326–1335

    Article  CAS  Google Scholar 

  • Chang SY, Liao C-H (2002) Analysis of glyphosate, glufosinate and aminomethylphosphonic acid by capillary electrophoresis with indirect fluorescence detection. J Chromatogr A 959:309–315

    Article  CAS  Google Scholar 

  • Chang SY, Wei M-Y (2005) Simultaneous determination of glyphosate, glufosinate, and minomethylphosphonic acid by capillary electrophoresis after 9-fluorenylmethyl chloroformate derivatization. J Chin Chem Soc 52:785–792

    Article  CAS  Google Scholar 

  • Chang Y, Zhang Z, Hao J et al (2016a) A simple label free colorimetric method for glyphosate detection based on the inhibition of peroxidase-like activity of Cu(II). Sens Actuators B Chem 228:410–415

    Article  CAS  Google Scholar 

  • Chang Y-C, Lin Y-S, Xiao G-T et al (2016b) A highly selective and sensitive nanosensor for the detection of glyphosate. Talanta 161:94–98

    Article  CAS  Google Scholar 

  • Chaufan G, Coalova I, Ríos de Molina MDC (2014) Glyphosate commercial formulation causes cytotoxicity, oxidative effects, and apoptosis on human cells: differences with its active ingredient. Int J Toxicol 33:29–38

    Article  CAS  Google Scholar 

  • Che H, Liu S (2014) Contaminant detection using multiple conventional water quality sensors in an early warning system. Proc Eng 89:479–487

    Article  CAS  Google Scholar 

  • Chenier PJ (2002) Sulfuric acid and its derivatives. In: Chenier PJ (ed) Survey of industrial chemistry. Springer, Boston, pp 23–40

    Chapter  Google Scholar 

  • Cikalo MG, Goodall DM, Matthews W (1996) Analysis of glyphosate using capillary electrophoresis with indirect detection. J Chromatogr A 745:189–200

    Article  CAS  Google Scholar 

  • Clegg BS, Stephenson GR, Hall JC (1999) Development of an enzyme-linked immunosorbent assay for the detection of glyphosate. J Agric Food Chem 47:5031–5037

    Article  CAS  Google Scholar 

  • Corbera M, Hidalgo M, Salvadó V, Wieczorek PP (2005) Determination of glyphosate and aminomethylphosphonic acid in natural water using the capillary electrophoresis combined with enrichment step. Anal Chim Acta 540:3–7

    Article  CAS  Google Scholar 

  • Coutinho CFB, Mazo LH (2005) Complexos metálicos com o herbicida glifosato: revisão. Quim Nova 28:1038

    Article  CAS  Google Scholar 

  • Coutinho CFB, Coutinho LFM, Mazo LH et al (2007) Direct determination of glyphosate using hydrophilic interaction chromatography with coulometric detection at copper microelectrode. Anal Chim Acta 592:30–35

    Article  CAS  Google Scholar 

  • da Silva AS, Fernandes FCB, Tognolli JO et al (2011) A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 79:1881–1885

    Article  CAS  Google Scholar 

  • Dai H, Sang M, Wang Y et al (2014) Determination of trace glyphosate in water with a prism coupling optical waveguide configuration. Sens Actuators A Phys 218:88–93

    Article  CAS  Google Scholar 

  • De Almeida LKS, Chigome S, Torto N et al (2015) A novel colorimetric sensor strip for the detection of glyphosate in water. Sens Actuators B Chem 206:357–363

    Article  CAS  Google Scholar 

  • De Góes RE, Muller M, Fabris JL (2017) Spectroscopic detection of glyphosate in water assisted by laser-ablated silver nanoparticles. Sensors 17(954):1–15

    Google Scholar 

  • de Llasera MPG, Gómez-Almaraz L, Vera-Avila LE, Peña-Alvarez A (2005) Matrix solid-phase dispersion extraction and determination by high-performance liquid chromatography with fluorescence detection of residues of glyphosate and aminomethylphosphonic acid in tomato fruit. J Chromatogr A 1093:139–146

    Article  CAS  Google Scholar 

  • Delmonico EL, Bertozzi J, Evelázio de Souza N, Celestino Oliveira C (2014) Determination of glyphosate and aminomethylphosphonic acid for assessing the quality tap water using SPE and HPLC. Acta Sci Technol 36:513–519

    Article  Google Scholar 

  • DeLorenzo ME, Lauth J, Pennington PL et al (1999) Atrazine effects on the microbial food web in tidal creek mesocosms. Aquat Toxicol 46:241–251

    Article  CAS  Google Scholar 

  • Dickson SJ, Meinhold RH, Beer ID, Koelmeyer TD (1988) Rapid determination of glyphosate in postmortem specimens using 31P NMR. J Anal Toxicol 12:284–286

    Article  CAS  Google Scholar 

  • Ding X, Yang K-L (2013) Development of an oligopeptide functionalized surface plasmon resonance biosensor for online detection of glyphosate. Anal Chem 85:5727–5733

    Article  CAS  Google Scholar 

  • Ding J, Guo H, Liu W-W et al (2013) Current progress on the detection of glyphosate in environmental samples. J Sci Appl Biomed 2014:2015

    Google Scholar 

  • Ding J, Guo H, Liu W-W, Zhang W-W, Wang J-W (2015) Current progress on the detection of glyphosate in environmental samples. J Sci Appl Biomed 3(6):88–95

    Google Scholar 

  • do Carmo Langiano CV, Martinez CBR (2008) Toxicity and effects of a glyphosate-based herbicide on the Neotropical fish Prochilodus lineatus. Comp Biochem Physiol C Toxicol Pharmacol 147:222–231

    Article  CAS  Google Scholar 

  • Ejaz S, Akram W, Lim CW et al (2004) Endocrine disrupting pesticides: a leading cause of cancer among rural people in Pakistan. Exp Oncol 26:98–105

    CAS  Google Scholar 

  • El-Gendy KS, Aly NM, El-Sebae AH (1998) Effects of edifenphos and glyphosate on the immune response and protein biosynthesis of bolti fish (Tilapia nilotica). J Environ Sci Health B 33:135–149

    Article  CAS  Google Scholar 

  • European Commission (2002) Review report for the active substance glyphosate. European Commission 6511/VI/99-final. https://big.assets.huffingtonpost.com/ec.2002.pdf. Accessed 20 April 2018

  • Fang F, Xu H, Wei RQ et al (2011) Determination of glyphosate by high performance liquid chromatography with o-nitrobenzenesulfonyl chloride as derivatization reagent. Fenxi Ceshi Xuebao 30:683–686

    CAS  Google Scholar 

  • Fang F, Wei RQ et al (2014) Determination of glyphosate by HPLC with a novel pre-column derivatization reagent. Chin J Bioprocess Eng 12(3):69–73

    CAS  Google Scholar 

  • Forlani G, Mangiagalli A, Nielsen E, Suardi CM (1999) Degradation of the phosphonate herbicide glyphosate in soil: evidence for a possible involvement of unculturable microorganisms. Soil Biol Biochem 31:991–997

    Article  CAS  Google Scholar 

  • Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: a unique global herbicide. ACS Monograph 189

  • Frense D, Müller A, Beckmann D (1998) Detection of environmental pollutants using optical biosensor with immobilized algae cells. Sens Actuators B Chem 51:256–260

    Article  CAS  Google Scholar 

  • Friestad HO, Brønstad JO (1985) Improved polarographic method for determination of glyphosate herbicide in crops, soil, and water. J Assoc Off Anal Chem 68:76–79

    CAS  Google Scholar 

  • Garcia AF, do Carmo Rollemberg M (2007) Determinação voltamétrica do herbicida glifosato em águas naturais utilizando eletrodo de cobre. Quim Nova 30(7):1592–1596

    Article  CAS  Google Scholar 

  • Garcia AF, Rollemberg MC (2007) Voltammetric determination of glyphosate in natural waters with a copper electrode. Quím Nova 30:1592–1596

    Article  CAS  Google Scholar 

  • Garry VF, Harkins ME, Erickson LL et al (2002) Birth defects, season of conception, and sex of children born to pesticide applicators living in the Red River Valley of Minnesota, USA. Environ Health Perspect 110(Suppl 3):441–449

    Article  Google Scholar 

  • Gasnier C, Dumont C, Benachour N et al (2009) Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology 262:184–191

    Article  CAS  Google Scholar 

  • Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for roundup® herbicide. In: Ware GW (ed) Reviews of environmental contamination and toxicology. Springer, New York, pp 35–120

    Chapter  Google Scholar 

  • Glass RL (1981) Colorimetric determination of glyphosate in water after oxidation to orthophosphate. Anal Chem 53:921–923

    Article  CAS  Google Scholar 

  • Glass RL (1984) Metal complex formation by glyphosate. J Agric Food Chem 32:1249–1253

    Article  CAS  Google Scholar 

  • Glusczak L, dos Santos Miron D, Crestani M et al (2006) Effect of glyphosate herbicide on acetylcholinesterase activity and metabolic and hematological parameters in piava (Leporinus obtusidens). Ecotoxicol Environ Saf 65:237–241

    Article  CAS  Google Scholar 

  • Glusczak L, dos Santos Miron D, Moraes BS et al (2007) Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comp Biochem Physiol C Toxicol Pharmacol 146:519–524

    Article  CAS  Google Scholar 

  • González-Martínez MA, Brun EM, Puchades R et al (2005) Glyphosate immunosensor. Application for water and soil analysis. Anal Chem 77:4219–4227

    Article  CAS  Google Scholar 

  • Goodwin L, Startin JR, Keely BJ, Goodall DM (2003) Analysis of glyphosate and glufosinate by capillary electrophoresis–mass spectrometry utilising a sheathless microelectrospray interface. J Chromatogr A 1004:107–119

    Article  CAS  Google Scholar 

  • Govindarajulu PP (2008) Literature review of impacts of glyphosate herbicide on amphibians: what risks can the silvicultural use of this herbicide pose for amphibians in B.C.? B.C. Ministry of Environment, Victoria, BC. Wildlife Report No. R-28

  • Grisolia CK (2002) A comparison between mouse and fish micronucleus test using cyclophosphamide, mitomycin C and various pesticides. Mutat Res 518:145–150

    Article  CAS  Google Scholar 

  • Gui Y-X, Fan X-N, Wang H-M et al (2012) Glyphosate induced cell death through apoptotic and autophagic mechanisms. Neurotoxicol Teratol 34:344–349

    Article  CAS  Google Scholar 

  • Guo Z-X, Cai Q, Yang Z (2005) Determination of glyphosate and phosphate in water by ion chromatography–inductively coupled plasma mass spectrometry detection. J Chromatogr A 1100:160–167

    Article  CAS  Google Scholar 

  • Guo Z-X, Cai Q, Yang Z (2007) Ion chromatography/inductively coupled plasma mass spectrometry for simultaneous determination of glyphosate, glufosinate, fosamine and ethephon at nanogram levels in water. Rapid Commun Mass Spectrom 21:1606–1612

    Article  CAS  Google Scholar 

  • Guo J, Zhang Y, Luo Y et al (2014) Efficient fluorescence resonance energy transfer between oppositely charged CdTe quantum dots and gold nanoparticles for turn-on fluorescence detection of glyphosate. Talanta 125:385–392

    Article  CAS  Google Scholar 

  • Guo H, Riter LS, Wujcik CE, Armstrong DW (2016) Direct and sensitive determination of glyphosate and aminomethylphosphonic acid in environmental water samples by high performance liquid chromatography coupled to electrospray tandem mass spectrometry. J Chromatogr A 1443:93–100

    Article  CAS  Google Scholar 

  • Habekost A (2015) Spectroscopic and electrochemical investigations of N-(phosphonomethyl)glycine (glyphosate) and (aminomethyl)phosphonic acid (AMPA). World J Chem Educ 3(6):134–140

    CAS  Google Scholar 

  • Habekost A (2017) Rapid and sensitive spectroelectrochemical and electrochemical detection of glyphosate and AMPA with screen-printed electrodes. Talanta 162:583–588

    Article  CAS  Google Scholar 

  • Hance RJ (1976) Herbicide usage and soil properties. Plant Soil 45:291–293

    Article  CAS  Google Scholar 

  • Hanke I, Singer H, Hollender J (2008) Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography–tandem mass spectrometry: performance tuning of derivatization, enrichment and detection. Anal Bioanal Chem 391:2265–2276

    Article  CAS  Google Scholar 

  • Hao Chunyan, Morse David, Morra Franca, Zhao Xiaoming, Yang Paul, Nunn Brian (2011) Direct aqueous determination of glyphosate and related compounds by liquid chromatography/tandem mass spectrometry using reversed-phase and weak anion-exchange mixed-mode column. J Chromatogr A 1218(33):5638–5643

    Article  CAS  Google Scholar 

  • Heras-Mendaza F, Casado-Fariñas I, Paredes-Gascón M, Conde-Salazar L (2008) Erythema multiforme-like eruption due to an irritant contact dermatitis from a glyphosate pesticide. Contact Dermat 59:54–56

    Article  Google Scholar 

  • Hidalgo C, Rios C, Hidalgo M et al (2004) Improved coupled-column liquid chromatographic method for the determination of glyphosate and aminomethylphosphonic acid residues in environmental waters. J Chromatogr A 1035:153–157

    Article  CAS  Google Scholar 

  • Ho MW, Cherry B (2010) Glyphosate tolerant crops bring diseases and death. Sci Soc 47:12–15

    Google Scholar 

  • Hogendoorn EA, Ossendrijver FM, Dijkman E, Baumann RA (1999) Rapid determination of glyphosate in cereal samples by means of pre-column derivatisation with 9-fluorenylmethyl chloroformate and coupled-column liquid chromatography with fluorescence detection. J Chromatogr A 833:67–73

    Article  CAS  Google Scholar 

  • Hokanson R, Fudge R, Chowdhary R, Busbee D (2007) Alteration of estrogen-regulated gene expression in human cells induced by the agricultural and horticultural herbicide glyphosate. Hum Exp Toxicol 26:747–752

    Article  CAS  Google Scholar 

  • Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539

    Article  CAS  Google Scholar 

  • Hu J-Y, Zhao D-Y, Ning J et al (2007) Determination of glyphosate residues in soil and apple by capillary gas chromatography with nitrogen-phosphorus detection. Chin J Pestic Sci 3:016

    Google Scholar 

  • Hu J-Y, Chen C-L, Li J-Z (2008) A simple method for the determination of glyphosate residues in soil by capillary gas chromatography with nitrogen phosphorus. J Anal Chem 63:371–375

    Article  CAS  Google Scholar 

  • Huang Y, Reddy KN, Thomson SJ, Yao H (2015) Assessment of soybean injury from glyphosate using airborne multispectral remote sensing. Pest Manag Sci 71:545–552

    Article  CAS  Google Scholar 

  • Huhn C (2018) More and enhanced glyphosate analysis is needed. Anal Bioanal Chem 410:3041–3045

    Article  CAS  Google Scholar 

  • Humphries D, Anderson A-M, Byrtus G (2005) Glyphosate residues in Alberta’s atmospheric deposition, soils and surface waters. Alberta Environment no. T/806

  • Ibáñez M, Pozo ÓJ, Sancho JV et al (2005) Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry. J Chromatogr A 1081:145–155

    Article  CAS  Google Scholar 

  • Ibáñez M, Pozo OJ, Sancho JV et al (2006) Re-evaluation of glyphosate determination in water by liquid chromatography coupled to electrospray tandem mass spectrometry. J Chromatogr A 1134:51–55

    Article  CAS  Google Scholar 

  • Jan MR, Shah J, Muhammad M, Ara B (2009) Glyphosate herbicide residue determination in samples of environmental importance using spectrophotometric method. J Hazard Mater 169:742–745

    Article  CAS  Google Scholar 

  • Jayasumana C, Gunatilake S, Senanayake P (2014) Glyphosate, hard water and nephrotoxic metals: are they the culprits behind the epidemic of chronic kidney disease of unknown etiology in Sri Lanka? Int J Environ Res Public Health 11:2125–2147

    Article  Google Scholar 

  • Jayasumana C, Gunatilake S, Siribaddana S (2015) Simultaneous exposure to multiple heavy metals and glyphosate may contribute to Sri Lankan agricultural nephropathy. BMC Nephrol 16:103

    Article  CAS  Google Scholar 

  • Jiraungkoorskul W, Upatham ES, Kruatrachue M et al (2003) Biochemical and histopathological effects of glyphosate herbicide on Nile tilapia (Oreochromis niloticus). Environ Toxicol 18:260–267

    Article  CAS  Google Scholar 

  • Johal GS, Huber DM (2009) Glyphosate effects on diseases of plants. Eur J Agron 31:144–152

    Article  CAS  Google Scholar 

  • Kaczyński P, Łozowicka B (2015) Liquid chromatographic determination of glyphosate and aminomethylphosphonic acid residues in rapeseed with MS/MS detection or derivatization/fluorescence detection. Open Chem 13:1011–1019

    Article  CAS  Google Scholar 

  • Kataoka H, Ryu S, Sakiyama N, Makita M (1996) Simple and rapid determination of the herbicides glyphosate and glufosinate in river water, soil and carrot samples by gas chromatography with flame photometric detection. J Chromatogr A 726:253–258

    Article  CAS  Google Scholar 

  • Kawai S, Uno B, Tomita M (1991) Determination of glyphosate and its major metabolite aminomethylphosphonic acid by high-performance liquid chromatography after derivatization with p-toluenesulphonyl chloride. J Chromatogr A 540:411–415

    Article  CAS  Google Scholar 

  • Khenifi A, Derriche Z, Forano C et al (2009) Glyphosate and glufosinate detection at electrogenerated NiAl-LDH thin films. Anal Chim Acta 654:97–102

    Article  CAS  Google Scholar 

  • Khrolenko MV, Wieczorek PP (2005) Determination of glyphosate and its metabolite aminomethylphosphonic acid in fruit juices using supported-liquid membrane preconcentration method with high-performance liquid chromatography and UV detection after derivatization with p-toluenesulphonyl chloride. J Chromatogr A 1093:111–117

    Article  CAS  Google Scholar 

  • Kintzios S, Pistola E, Panagiotopoulos P et al (2001) Bioelectric recognition assay (BERA). Biosens Bioelectron 16:325–336

    Article  CAS  Google Scholar 

  • Koblizek M, Masojidek J, Komenda J et al (1998) A sensitive photosystem II-based biosensor for detection of a class of herbicides. Biotechnol Bioeng 60:664–669

    Article  CAS  Google Scholar 

  • Kongtip P, Nankongnab N, Phupancharoensuk R et al (2017) Glyphosate and Paraquat in maternal and fetal serums in Thai women. J Agromed 22:282–289

    Article  Google Scholar 

  • Koskinen WC, Marek LJ, Hall KE (2016) Analysis of glyphosate and aminomethylphosphonic acid in water, plant materials and soil. Pest Manag Sci 72:423–432

    Article  CAS  Google Scholar 

  • Kudzin ZH, Gralak DK, Drabowicz J, Luczak J (2002) Novel approach for the simultaneous analysis of glyphosate and its metabolites. J Chromatogr A 947:129–141

    Article  CAS  Google Scholar 

  • Kudzin ZH, Gralak DK, Andrijewski G et al (2003) Simultaneous analysis of biologically active aminoalkanephosphonic acids. J Chromatogr A 998:183–199

    Article  CAS  Google Scholar 

  • Laitinen P, Rämö S, Nikunen U et al (2009) Glyphosate and phosphorus leaching and residues in boreal sandy soil. Plant Soil 323:267–283

    Article  CAS  Google Scholar 

  • Lee EA, Zimmerman LR, Bhullar BS, Thurman EM (2002) Linker-assisted immunoassay and liquid chromatography/mass spectrometry for the analysis of glyphosate. Anal Chem 74:4937–4943

    Article  CAS  Google Scholar 

  • Lee HU, Shin HY, Lee JY et al (2010) Quantitative detection of glyphosate by simultaneous analysis of UV spectroscopy and fluorescence using DNA-labeled gold nanoparticles. J Agric Food Chem 58:12096–12100

    Article  CAS  Google Scholar 

  • Lee HU, Jung DU, Lee JH et al (2013) Detection of glyphosate by quantitative analysis of fluorescence and single DNA using DNA-labeled fluorescent magnetic core–shell nanoparticles. Sens Actuators B Chem 177:879–886

    Article  CAS  Google Scholar 

  • Li X, Xu J, Jiang Y et al (2009) Hydrophilic-interaction liquid chromatography (HILIC) with dad and mass spectroscopic detection for direct analysis of glyphosate and glufosinate residues and for product quality control. Acta Chromatogr 21:559–576

    Article  CAS  Google Scholar 

  • Li Y, Zhang S, Zhang Q et al (2016) Binding-induced internal-displacement of signal-on photoelectrochemical response: a glyphosate detection platform based on graphitic carbon nitride. Sens Actuators B Chem 224:798–804

    Article  CAS  Google Scholar 

  • Liao Y, Berthiona J-M, Coleta I et al (2018) Validation and application of analytical method for glyphosate and glufosinate in foods by liquid chromatography–tandem mass spectrometry. J Chromatogr A 1549:31–38

    Article  CAS  Google Scholar 

  • Liu Q, Jiang X, Zhang Y et al (2015) A novel test strip for organophosphorus detection. Sens Actuators B Chem 210:803–810

    Article  CAS  Google Scholar 

  • Lou ZY, Zhu GN, Wu HM (2001) Study on the detection method of glyphosate in pond water. Chin J Ningbo Acad 13(Suppl):142–145

    Google Scholar 

  • Luo X, Chen L, Zhao Y (2015) Simultaneous determination of three chloroacetic acids, three herbicides, and 12 anions in water by ion chromatography. J Sep Sci 38:3096–3102

    Article  CAS  Google Scholar 

  • Lushchak OV, Kubrak OI, Storey JM et al (2009) Low toxic herbicide Roundup induces mild oxidative stress in goldfish tissues. Chemosphere 76:932–937

    Article  CAS  Google Scholar 

  • Mallat E, Barceló D (1998) Analysis and degradation study of glyphosate and of aminomethylphosphonic acid in natural waters by means of polymeric and ion-exchange solid-phase extraction columns followed by ion chromatography-post-column derivatization with fluorescence detection. J Chromatogr A 823:129–136

    Article  CAS  Google Scholar 

  • Marc J, Mulner-Lorillon O, Bellé R (2004) Glyphosate-based pesticides affect cell cycle regulation. Biol Cell 96:245–249

    Article  CAS  Google Scholar 

  • Martínez Gil P, Laguarda-Miro N, Camino JS, Peris RM (2013) Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique. Talanta 115:702–705

    Article  CAS  Google Scholar 

  • Martins-Júnior HA, Lebre DT, Wang AY et al (2009) An alternative and fast method for determination of glyphosate and aminomethylphosphonic acid (AMPA) residues in soybean using liquid chromatography coupled with tandem mass spectrometry. Rapid Commun Mass Spectrom 23:1029–1034

    Article  CAS  Google Scholar 

  • Martins-Júnior HA, Lebre DT, Wang AY et al (2011) Residue analysis of glyphosate and aminomethylphosphonic acid (AMPA) in Soybean using liquid chromatography coupled with tandem mass spectrometry. In: Ng T-B (ed) Soybean - biochemistry, chemistry and physiology. InTech. https://www.intechopen.com/books/soybean-biochemistry-chemistry-and-physiology/residue-analysis-of-glyphosate-and-aminomethylphosphonic-acid-ampa-in-soybean-using-liquid-chromatog

  • Mazereeuw M, Hofte AJP, Tjaden UR, van der Greef J (1997) A novel sheathless and electrodeless microelectrospray interface for the on-line coupling of capillary zone electrophoresis to mass spectrometry. Rapid Commun Mass Spectrom 11:981–986

    Article  CAS  Google Scholar 

  • Merás ID, Díaz TG, Franco MA (2005) Simultaneous fluorimetric determination of glyphosate and its metabolite, aminomethylphosphonic acid, in water, previous derivatization with NBD-Cl and by partial least squares calibration (PLS). Talanta 65:7–14

    Article  CAS  Google Scholar 

  • Mesnage R, Bernay B, Séralini G-E (2013) Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology 313:122–128

    Article  CAS  Google Scholar 

  • Metzger JO (1997) Green Chemistry. Designing Chemistry for the Environment. Herausgegeben von PT Anastas und TS Williamson. American Chemical Society, Wahington, DC, 1996. 251 S., geb. 89.95£.-ISBN 0-8412-3399-3. Angew Chem Int Ed Engl 109:812–813

    Article  Google Scholar 

  • Minami T, Liu Y, Akdeniz A et al (2014) Intramolecular indicator displacement assay for anions: supramolecular sensor for glyphosate. J Am Chem Soc 136:11396–11401

    Article  CAS  Google Scholar 

  • Mol HGJ, van Dam RCJ (2014) Rapid detection of pesticides not amenable to multi-residue methods by flow injection–tandem mass spectrometry. Anal Bioanal Chem 406:6817–6825

    Article  CAS  Google Scholar 

  • Molina M, Silva M (2002) Analytical potential of fluorescein analogues for ultrasensitive determinations of phosphorus-containing amino acid herbicides by micellar electrokinetic chromatography with laser-induced fluorescence detection. Electrophoresis 23:1096–1103

    Article  CAS  Google Scholar 

  • Moraes FC, Mascaro LH, Machado SAS, Brett CMA (2010) Direct electrochemical determination of glyphosate at copper phthalocyanine/multiwalled carbon nanotube film electrodes. Electroanalysis 22:1586–1591

    CAS  Google Scholar 

  • Napoli M, Cecchi S, Zanchi CA, Orlandini S (2015) Leaching of glyphosate and aminomethylphosphonic acid through silty clay soil columns under outdoor conditions. J Environ Qual 44:1667–1673

    Article  CAS  Google Scholar 

  • Nedelkoska TV, Low GK-C (2004) High-performance liquid chromatographic determination of glyphosate in water and plant material after pre-column derivatisation with 9-fluorenylmethyl chloroformate. Anal Chim Acta 511:145–153

    Article  CAS  Google Scholar 

  • Nešković NK, Poleksić V, Elezović I et al (1996) Biochemical and histopathological effects of glyphosate on carp, Cyprinus carpio L. Bull Environ Contam Toxicol 56:295–302

    Article  Google Scholar 

  • Nielsen JB, Nielsen F, Sørensen JA (2007) Defense against dermal exposures is only skin deep: significantly increased penetration through slightly damaged skin. Arch Dermatol Res 299:423–431

    Article  Google Scholar 

  • Nortes-Méndez R, Robles-Molina J, López-Blanco R et al (2016) Determination of polar pesticides in olive oil and olives by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry and high resolution mass spectrometry. Talanta 158:222–228

    Article  CAS  Google Scholar 

  • Okada E, Pérez D, De Gerónimo E et al (2018) Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-1734-7

    Article  Google Scholar 

  • Oliveira GC, Moccelini SK, Castilho M et al (2012) Biosensor based on atemoya peroxidase immobilised on modified nanoclay for glyphosate biomonitoring. Talanta 98:130–136

    Article  CAS  Google Scholar 

  • Paganelli A, Gnazzo V, Acosta H et al (2010) Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling. Chem Res Toxicol 23:1586–1595

    Article  CAS  Google Scholar 

  • Patsias J, Papadopoulou A, Papadopoulou-Mourkidou E (2001) Automated trace level determination of glyphosate and aminomethyl phosphonic acid in water by on-line anion-exchange solid-phase extraction followed by cation-exchange liquid chromatography and post-column derivatization. J Chromatogr A 932:83–90

    Article  CAS  Google Scholar 

  • Pei MQ, Lai J (2004) Qualitative and quantitative analysis of glyphosate. Chin J Guangdong Police Sci Technol 1:14–15

    Google Scholar 

  • Pintado S, Amaro RR, Mayén M, Mellado JMR (2012) Electrochemical determination of the glyphosate metabolite aminomethylphosphonic acid (AMPA) in drinking waters with an electrodeposited copper electrode. Int J Electrochem Sci 7:305–312

    CAS  Google Scholar 

  • Pipke R, Amrhein N (1988) Isolation and characterization of a mutant of Arthrobacter sp. Strain GLP-1 which utilizes the herbicide glyphosate as its sole source of phosphorus and nitrogen. Appl Environ Microbiol 54:2868–2870

    CAS  Google Scholar 

  • Poiger T, Buerge IJ, Bächli A et al (2017) Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with on-line solid phase extraction LC-MS/MS. Environ Sci Pollut Res Int 24:1588–1596

    Article  CAS  Google Scholar 

  • Poletta GL, Larriera A, Kleinsorge E, Mudry M (2009) Genotoxicity of the herbicide formulation Roundup® (glyphosate) in broad-snouted caiman (Caiman latirostris) evidenced by the Comet assay and the Micronucleus test. Mutat Res Genet Toxicol Environ Mutagen 672:95–102

    Article  CAS  Google Scholar 

  • Pollegioni L, Schonbrunn E, Siehl D (2011) Molecular basis of glyphosate resistance–different approaches through protein engineering. FEBS J 278:2753–2766

    Article  CAS  Google Scholar 

  • Poulsen ME, Christensen HB, Herrmann SS (2009) Proficiency test on incurred and spiked pesticide residues in cereals. Accredit Qual Assur 14:477–485

    Article  CAS  Google Scholar 

  • Prasad BB, Jauhari D, Tiwari MP (2014) Doubly imprinted polymer nanofilm-modified electrochemical sensor for ultra-trace simultaneous analysis of glyphosate and glufosinate. Biosens Bioelectron 59:81–88

    Article  CAS  Google Scholar 

  • Ramirez CE, Bellmund S, Gardinali PR (2014) A simple method for routine monitoring of glyphosate and its main metabolite in surface waters using lyophilization and LC–FLD + MS/MS. Case study: canals with influence on Biscayne National Park. Sci Total Environ 496:389–401

    Article  CAS  Google Scholar 

  • Rawat KA, Majithiya RP, Rohit JV et al (2016) Mg2+ ion as a tuner for colorimetric sensing of glyphosate with improved sensitivity via the aggregation of 2-mercapto-5-nitrobenzimidazole capped silver nanoparticles. RSC Adv 6:47741–47752

    Article  CAS  Google Scholar 

  • Relyea RA (2012) New effects of Roundup on amphibians: predators reduce herbicide mortality; herbicides induce antipredator morphology. Ecol Appl 22:634–647

    Article  Google Scholar 

  • Richard S, Moslemi S, Sipahutar H et al (2005) Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ Health Perspect 113:716–720

    Article  CAS  Google Scholar 

  • Ridlen JS, Klopf GJ, Nieman TA (1997) Determination of glyphosate and related compounds using HPLC with tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence detection. Anal Chim Acta 341:195–204

    Article  CAS  Google Scholar 

  • Roberts SM (1989) Molecular recognition: chemical and biochemical problems: the proceedings of an International Symposium, University of Exeter, April 1989. CRC PressI Llc

  • Royer A, Beguin S, Tabet JC et al (2000) Determination of glyphosate and aminomethylphosphonic acid residues in water by gas chromatography with tandem mass spectrometry after exchange ion resin purification and derivatization. Application on vegetable matrixes. Anal Chem 72:3826–3832

    Article  CAS  Google Scholar 

  • Rubio F, Veldhuis LJ, Clegg BS et al (2003) Comparison of a direct ELISA and an HPLC method for glyphosate determinations in water. J Agric Food Chem 51:691–696

    Article  CAS  Google Scholar 

  • Rueppel ML, Brightwell BB, Schaefer J, Marvel JT (1977) Metabolism and degradation of glyphosate in soil and water. J Agric Food Chem 25:517–528

    Article  CAS  Google Scholar 

  • Rull RP (2004) Neural tube defects and maternal residential proximity to agricultural pesticide applications and crops. Am J Epidemiol 163:743–753

    Article  Google Scholar 

  • Sadi B, Vonderheide AP, Caruso JA (2004) Analysis of phosphorus herbicides by ion-pairing reversed-phase liquid chromatography coupled to inductively coupled plasma mass spectrometry with octapole reaction cell. J Chromatogr A 1050:95–101

    Article  CAS  Google Scholar 

  • Samsel A, Seneff S (2013a) Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: pathways to modern diseases. Entropy 15:1416–1463

    Article  CAS  Google Scholar 

  • Samsel A, Seneff S (2013b) Glyphosate, pathways to modern diseases II: celiac sprue and gluten intolerance. Interdiscip Toxicol 6:159–184

    Article  CAS  Google Scholar 

  • Sanchís J, Kantiani L, Llorca M et al (2012) Determination of glyphosate in groundwater samples using an ultrasensitive immunoassay and confirmation by on-line solid-phase extraction followed by liquid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem 402:2335–2345

    Article  CAS  Google Scholar 

  • Sancho JV, Hernández F, López FJ et al (1996) Rapid determination of glufosinate, glyphosate and aminomethylphosphonic acid in environmental water samples using precolumn fluorogenic labeling and coupled-column liquid chromatography. J Chromatogr A 737:75–83

    Article  CAS  Google Scholar 

  • Sato K, Jin JY, Takeuchi T et al (2001) Integrated pulsed amperometric detection of glufosinate, bialaphos and glyphosate at gold electrodes in anion-exchange chromatography. J Chromatogr A 919:313–320

    Article  CAS  Google Scholar 

  • Sato M, Yamashita A, Kikuchi M et al (2009) Simultaneous analysis of phosphorus-containing amino acid type herbicides and their metabolites in human samples using N-acetyl, O-methyl derivatives by LC/MS. Jpn J Forensic Sci Tech 14:35–43

    Article  Google Scholar 

  • Schafer H, Hettler H, Fritsche U et al (1994) Biotests using unicellular algae and ciliates for predicting long-term effects of toxicants. Ecotoxicol Environ Saf 27:64–81

    Article  CAS  Google Scholar 

  • Schrübbers LC, Masís-Mora M, Rojas EC et al (2016) Analysis of glyphosate and aminomethylphosphonic acid in leaves from Coffea arabica using high performance liquid chromatography with quadrupole mass spectrometry detection. Talanta 146:609–620

    Article  CAS  Google Scholar 

  • Schuette J (1998) Environmental fate of glyphosate. Published by Environmental Monitoring & Pest Management. Department of Pesticide Regulation Sacramento, California ISSN 95824–95624

  • Scribner EA, Battaglin WA, Gilliom RJ, Meyer MT (2007) Concentrations of glyphosate, its degradation product, aminomethylphosphonic acid, and glufosinate in ground-and surface-water, rainfall, and soil samples collected in the United States, 2001–06. Geological Survey (US). https://pubs.usgs.gov/sir/2007/5122/pdf/SIR2007-5122.pdf

  • See HH, Hauser PC, Ibrahim WAW, Sanagi MM (2010) Rapid and direct determination of glyphosate, glufosinate, and aminophosphonic acid by online preconcentration CE with contactless conductivity detection. Electrophoresis 31:575–582

    Article  CAS  Google Scholar 

  • Seneff S, Swanson N, Li C (2015) Aluminum and glyphosate can synergistically induce pineal gland pathology: connection to gut dysbiosis and neurological disease. Agric Sci China 6:42

    CAS  Google Scholar 

  • Shao CY, Howe CJ, Porter AJR, Glover LA (2002) Novel cyanobacterial biosensor for detection of herbicides. Appl Environ Microbiol 68(10):5026–5033

    Article  CAS  Google Scholar 

  • Sharma DK, Gupta A, Kashyap R, Kumar N (2012) Spectrophotometric method for the determination of Glyphosate in relation to its environmental and toxicological analysis. Arch Environ Sci 6:42–49

    Google Scholar 

  • Shehata AA, Schrödl W, Aldin AA et al (2013) The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Curr Microbiol 66:350–358

    Article  CAS  Google Scholar 

  • Shim YK, Mlynarek SP, van Wijngaarden E (2009) Parental exposure to pesticides and childhood brain cancer: U.S. Atlantic coast childhood brain cancer study. Environ Health Perspect 117:1002–1006

    Article  Google Scholar 

  • Si YB, Sang ZY, Cheng FX et al (2009) Determination of glyphosate in soil by high performance liquid chromatography after derivatization with p-toluenesulphonyl chloride. J Anhui Agric Univ 36:136–139

    CAS  Google Scholar 

  • Sierra EV, Méndez MA, Sarria VM, Cortés MT (2008) Electrooxidación de glifosato sobre electrodos de níquel y cobre. Quim Nova 31:220–226

    Article  CAS  Google Scholar 

  • Simonetti E, Cartaud G, Quinn RM et al (2015) An interlaboratory comparative study on the quantitative determination of glyphosate at low levels in wheat flour. J AOAC Int 98:1760–1768

    Article  CAS  Google Scholar 

  • Singh BK (1998) Plant amino acids: biochemistry and biotechnology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Skeff W, Recknagel C, Schulz-Bull DE (2016) The influence of salt matrices on the reversed-phase liquid chromatography behavior and electrospray ionization tandem mass spectrometry detection of glyphosate, glufosinate, aminomethylphosphonic acid and 2-aminoethylphosphonic acid in water. J Chromatogr A 1475:64–73

    Article  CAS  Google Scholar 

  • Slager RE, Simpson SL, Levan TD et al (2010) Rhinitis associated with pesticide use among private pesticide applicators in the agricultural health study. J Toxicol Environ Health A 73:1382–1393

    Article  CAS  Google Scholar 

  • Songa EA, Waryo T, Jahed N et al (2009a) Electrochemical nanobiosensor for glyphosate herbicide and its metabolite. Electroanalysis 21:671–674

    Article  CAS  Google Scholar 

  • Songa EA, Arotiba OA, Owino JHO et al (2009b) Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry 75:117–123

    Article  CAS  Google Scholar 

  • Songa EA, Somerset VS, Waryo T, Baker PG, Iwuoha EI (2009c) Amperometric nanobiosensor for quantitative determination of glyphosate and glufosinate residues in corn samples. J Macromol Sci Part A Pure Appl Chem 81:123–139

    CAS  Google Scholar 

  • Stachowskihaberkorn S, Becker B, Marie D et al (2008) Impact of Roundup on the marine microbial community, as shown by an in situ microcosm experiment. Aquat Toxicol 89:232–241

    Article  CAS  Google Scholar 

  • Sun N, Hu B-X, Mo W-M (2007) Single sweep oscillopolarographic technique for the determination of glyphosate after derivatization with sodium nitrite. PESTICIDES-SHENYANG 46:609

    CAS  Google Scholar 

  • Sun L, Kong D, Gu W et al (2017) Determination of glyphosate in soil/sludge by high performance liquid chromatography. J Chromatogr A 1502:8–13

    Article  CAS  Google Scholar 

  • Szarek J, Siwicki A, Andrzejewska A et al (2000) Effects of the herbicide Roundup™ on the ultrastructural pattern of hepatocytes in carp (Cyprinus carpio). Mar Environ Res 50:263–266

    Article  CAS  Google Scholar 

  • Tadeo JL, Sánchez-Brunete C, Pérez RA, Fernández MD (2000) Analysis of herbicide residues in cereals, fruits and vegetables. J Chromatogr A 882:175–191

    Article  CAS  Google Scholar 

  • Tan MJ, Hong Z-Y, Chang M-H et al (2017) Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides. Biosens Bioelectron 96:167–172

    Article  CAS  Google Scholar 

  • Tapsoba I, Paré S, Toé AM et al (2012) SWV determination of glyphosate in Burkina Faso soils using carbon fiber microelectrode. Int J Biol Chem Sci 6:2211–2220

    Google Scholar 

  • Teófilo RF, Reis EL, Reis C et al (2004) Experimental design employed to square wave voltammetry response optimization for the glyphosate determination. J Braz Chem Soc 15:865–871

    Article  Google Scholar 

  • Thompson DG, Cowell JE, Daniels RJ et al (1989) Liquid chromatographic method for quantitation of glyphosate and metabolite residues in organic and mineral soils, stream sediments, and hardwood foliage. J Assoc Off Anal Chem 72:355–360

    CAS  Google Scholar 

  • Thongprakaisang S, Thiantanawat A, Rangkadilok N et al (2013) Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem Toxicol 59:129–136

    Article  CAS  Google Scholar 

  • Tierney KB, Singh CR, Ross PS, Kennedy CJ (2007) Relating olfactory neurotoxicity to altered olfactory-mediated behaviors in rainbow trout exposed to three currently-used pesticides. Aquat Toxicol 81:55–64

    Article  CAS  Google Scholar 

  • Torul H, Boyaci İH, Tamer U (2010) Attomole detection of glyphosate by surface-enhanced Raman spectroscopy using gold nanorods. FABAD J Pharm Sci 35:179–184

    Google Scholar 

  • Tsao Y-C, Lai Y-C, Liu H-C et al (2016) Simultaneous determination and quantitation of paraquat, diquat, glufosinate and glyphosate in postmortem blood and urine by LC–MS–MS. J Anal Toxicol 40:427–436

    Article  CAS  Google Scholar 

  • Tseng S-H, Lo Y-W, Chang P-C et al (2004) Simultaneous quantification of glyphosate, glufosinate, and their major metabolites in rice and soybean sprouts by gas chromatography with pulsed flame photometric detector. J Agric Food Chem 52:4057–4063

    Article  CAS  Google Scholar 

  • Tsui MTK, Chu LM (2003) Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52:1189–1197

    Article  CAS  Google Scholar 

  • Tsui MTK, Chu LM (2008) Environmental fate and non-target impact of glyphosate-based herbicide (Roundup®) in a subtropical wetland. Chemosphere 71:439–446

    Article  CAS  Google Scholar 

  • Tsui MTK, Wang W-X, Chu LM (2005) Influence of glyphosate and its formulation (Roundup®) on the toxicity and bioavailability of metals to Ceriodaphnia dubia. Environ Pollut 138:59–68

    Article  CAS  Google Scholar 

  • Tsunoda N (1993) Simultaneous determination of the herbicides glyphosate, glufosinate and bialaphos and their metabolites by capillary gas chromatography—ion-trap mass spectrometry. J Chromatogr A 637:167–173

    Article  CAS  Google Scholar 

  • Tuesca D, Puricelli E (2007) Effect of tillage systems and herbicide treatments on weed abundance and diversity in a glyphosate resistant crop rotation. Crop Prot 26:1765–1770

    Article  CAS  Google Scholar 

  • Vass A, Robles-Molina J, Pérez-Ortega P et al (2016) Study of different HILIC, mixed-mode, and other aqueous normal-phase approaches for the liquid chromatography/mass spectrometry-based determination of challenging polar pesticides. Anal Bioanal Chem 408:4857–4869

    Article  CAS  Google Scholar 

  • Vreeken RJ, Speksnijder P, Bobeldijk-Pastorova I, Noij TH (1998) Selective analysis of the herbicides glyphosate and aminomethylphosphonic acid in water by on-line solid-phase extraction–high-performance liquid chromatography–electrospray ionization mass spectrometry. J Chromatogr A 794:187–199

    Article  CAS  Google Scholar 

  • Waiman CV, Avena MJ, Garrido M et al (2012) A simple and rapid spectrophotometric method to quantify the herbicide glyphosate in aqueous media. Application to adsorption isotherms on soils and goethite. Geoderma 170:154–158

    Article  CAS  Google Scholar 

  • Wang D, Lin B, Cao Y et al (2016a) A highly selective and sensitive fluorescence detection method of glyphosate based on an immune reaction strategy of carbon dot labeled antibody and antigen magnetic beads. J Agric Food Chem 64:6042–6050

    Article  CAS  Google Scholar 

  • Wang S, Liu B, Yuan D, Ma J (2016b) A simple method for the determination of glyphosate and aminomethylphosphonic acid in seawater matrix with high performance liquid chromatography and fluorescence detection. Talanta 161:700–706

    Article  CAS  Google Scholar 

  • Wang L, Bi Y, Hou J et al (2016c) Facile, green and clean one-step synthesis of carbon dots from wool: application as a sensor for glyphosate detection based on the inner filter effect. Talanta 160:268–275

    Article  CAS  Google Scholar 

  • Wang M, Ye H, You L, Chen X (2016d) A supramolecular sensor array using lanthanide-doped nanoparticles for sensitive detection of glyphosate and proteins. ACS Appl Mater Interfaces 8:574–581

    Article  CAS  Google Scholar 

  • Watts M (2009) Glyphosate, monograph, Pesticide Action Network Asia and the Pacific, Penang, Malaysia. Available via PAN ASIA PACIFIC. http://www.panap.net/sites/default/files/attachments/monograph_glyphosate.pdf. Accessed 13 March 16

  • Wei X, Pu Q (2015) Microchip electrophoresis for fast and interference-free determination of trace amounts of glyphosate and glufosinate residues in agricultural products. Methods Mol Biol 1274:21–29

    Article  CAS  Google Scholar 

  • Wei X, Gao X, Zhao L et al (2013) Fast and interference-free determination of glyphosate and glufosinate residues through electrophoresis in disposable microfluidic chips. J Chromatogr A 1281:148–154

    Article  CAS  Google Scholar 

  • Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol 31:117–165

    Article  CAS  Google Scholar 

  • Winfield TW (1990) Determination of glyphosate in drinking water by direct-aqueous-injection HPLC, post-column derivatization, and fluorescence detection: test method 547. U.S. Environmental Protection Agency. https://www.o2si.com/docs/epa-method-547.pdf

  • Woodburn AT (2000) Glyphosate: production, pricing and use worldwide. Pest Manag Sci 56:309–312

    Article  CAS  Google Scholar 

  • World Health Organization et al (1994) Glyphosate environmental health criteria no. 159. WHO, Geneva

    Google Scholar 

  • Yoshioka N, Asano M, Kuse A et al (2011) Rapid determination of glyphosate, glufosinate, bialaphos, and their major metabolites in serum by liquid chromatography–tandem mass spectrometry using hydrophilic interaction chromatography. J Chromatogr A 1218:3675–3680

    Article  CAS  Google Scholar 

  • Zelenkova NF, Vinokurova NG (2008) Determination of glyphosate and its biodegradation products by chromatographic methods. J Anal Chem 63:871–874

    Article  CAS  Google Scholar 

  • Zhang C, Hu X, Luo J et al (2015a) Degradation dynamics of glyphosate in different types of citrus orchard soils in China. Molecules 20:1161–1175

    Article  CAS  Google Scholar 

  • Zhang L, Chen L, Liu F (2015b) Mutual effect on determination of gibberellins and glyphosate in groundwater by spectrophotometry. Guang Pu Xue Yu Guang Pu Fen Xi 35:966–970

    CAS  Google Scholar 

  • Zhao P, Yan M, Zhang C et al (2011) Determination of glyphosate in foodstuff by one novel chemiluminescence-molecular imprinting sensor. Spectrochim Acta A Mol Biomol Spectrosc 78:1482–1486

    Article  CAS  Google Scholar 

  • Zheng J, Zhang H, Qu J et al (2013) Visual detection of glyphosate in environmental water samples using cysteamine-stabilized gold nanoparticles as colorimetric probe. Anal Methods 5:917–924

    Article  CAS  Google Scholar 

  • Zheng J, Wang Y, Feng Z et al (2015) Preparation of cationic starch microspheres and study on their absorption to anionic-type substance. Water Sci Technol 71:1545–1553

    Article  CAS  Google Scholar 

  • Zhou Y-M, Li N, Niu S et al (2007) Detection glyphosate residues in water by LC. China Meas Technol 3:036

    Google Scholar 

  • Zhu Y, Zhang F, Tong C, Liu W (1999) Determination of glyphosate by ion chromatography. J Chromatogr A 850:297–301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the state funding agencies Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG-Process: 01/17 CEX APQ 02633/17), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. P. Rodrigues or L. R. Goulart.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valle, A.L., Mello, F.C.C., Alves-Balvedi, R.P. et al. Glyphosate detection: methods, needs and challenges. Environ Chem Lett 17, 291–317 (2019). https://doi.org/10.1007/s10311-018-0789-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-018-0789-5

Keywords

Navigation