Skip to main content

Advertisement

Log in

Surfactants: toxicity, remediation and green surfactants

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Surfactants toxicity has induced a worldwide alert followed by various regulations. There are still concerns about the biodegradability and ecofriendliness of surfactants. Reviews on surfactants are available, but a concise manuscript covering surfactant types, primary and secondary toxicity of surfactants, evaluating the level of surfactant pollution worldwide, is needed. We review here the safety of surfactants in the aquatic system, in terrestrial ecosystems and for humans. We discuss strategies to solve surfactant contamination. Remediation methods include ozonation, UV radiation and catalyst-coupled auto-oxidation. We focus on the biodegradation of the anionic detergents sodium dodecyl sulfate and linear alkyl benzene sulfonate. Finally, the relevance and role of biosurfactants as alternatives to synthetic detergents are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abboud MM, Khleifat KM, Batarseh M, Tarawneh KA, Al-Mustafa A, Al-Madadhah M (2007) Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzym Microb Technol 41:432–439. doi:10.1016/j.enzmictec.03.011

    CAS  Google Scholar 

  • Abd-Allah AMA (1995) Determination of long chain alkylbenzenes in sediment samples from Alexandria Coast, Egypt. Toxicol Environ Chem 47:83–88. doi:10.1080/02772249509358130

    CAS  Google Scholar 

  • Abel PD (1974) Toxicity of synthetic detergents to fish and aquatic invertebrates. J Fish Biol 6:279–298. doi:10.1111/j.1095-8649.1974.tb04545.x

    CAS  Google Scholar 

  • Ambily PS, Jisha MS (2011) Characterization of alkyl sulfatase required for the biodegradation of sodium dodecyl sulphate (SDS). Eur J Exp Biol 1:41–49

    CAS  Google Scholar 

  • Ambily PS, Jisha MS (2012) Biodegradation of anionic surfactant, sodium dodecyl sulfate by Pseudomonas aeruginosa MTCC 10311. J Environ Biol 33(4):717–720

    CAS  Google Scholar 

  • Ankley GT, Burkhard LP (1992) Identification of surfactants as toxicants in a primary effluent. Environ Toxicol Chem 11:1235–1248

    CAS  Google Scholar 

  • Asok AK (2011) Bioremediation of the anionic surfactant linear alkylbenzene sulphonate (las) by Pseudomonas sp. isolated from soil. PhD thesis. Mahatma Gandhi University, Kottayam, India 192

  • Asok AK, Jisha MS (2012a) Biodegradation of the anionic surfactant linear alkylbenzene sulfonate (LAS) by autochthonous Pseudomonas sp. Water Air Soil Pollut 223(8):5039–5048. doi:10.1007/s11270-012-1256-8

    CAS  Google Scholar 

  • Asok AK, Jisha MS (2012b) Assessment of soil microbial toxicity on acute exposure of the anionic surfactant linear alkylbenzene sulfonate. J Environ Sci Technol 5:354–363. doi:10.3923/jest.2012.354.363

    CAS  Google Scholar 

  • Bardach JE, Fujiya M, Holl A (1965) Detergents: effects on the chemical senses of the fish Ictalurus natalis (le Sueur). Science 148:1605–1607

    CAS  Google Scholar 

  • Beltran FJ, Garcia-Araya JF, Alvarez PM (2000) Sodium dodecylbenzene sulfonate removal from water and wastewater. Kinetics of decomposition by ozonation. Ind Eng Chem Res 39:2214–2220. doi:10.1021/ie990721a

    CAS  Google Scholar 

  • Benincasa M, Contiero J, Manresa MA, Moraes IO (2002) Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J Food Eng 54:283–288. doi:10.1016/S0260-8774(01)00214-X

    Google Scholar 

  • Benvegnu T, Sassi JF (2010) Oligomannuronates from seaweeds as renewable sources for the development of green surfactants. Carbohydr Sustain Dev I:143–164

    Google Scholar 

  • Berna JL, Ferrer J, Moreno A, Prats D, Ruiz Bevia F (1989) The fate of LAS in the environment. Tenside Surfactants Deterg 26:101–107

    CAS  Google Scholar 

  • Bhatia M, Singh HD (1996) Biodegradation of commercial linear alkyl benzenes by Nocardia amarae. J Biosci 21:487–496

    CAS  Google Scholar 

  • Bhatkhande DS, Pangarkar VG, Beenackers AACM (2002) Photocatalytic degradation for environmental applications—a review. J Chem Technol Biotechnol 77:102–116. doi:10.1002/jctb.532

    CAS  Google Scholar 

  • Bird JA, Cain RB (1972) Metabolism of linear alkylbenzenesulfonates by a Vibrio sp. Biochem J 127(2):46

    Google Scholar 

  • Brandt KK, Hesselso M, Roslev P, Henriksen K, So J (2001) Toxic Effects of linear alkylbenzene sulfonate on metabolic activity, growth rate, and microcolony formation of Nitrosomonas and Nitrosospira strains. Appl Environ Microbiol 67:2489–2498

    CAS  Google Scholar 

  • Chahine L, Sempson N, Wagoner C (1997) The effect of sodium lauryl sulfate on recurrent aphthous ulcers: a clinical study. Compend Contin Educ Dent 18(12):1238–1240

    CAS  Google Scholar 

  • Chaturvedi V, Kumar A (2010a) Bacterial utilization of sodium dodecyl sulfate. Int J Appl Biol Pharmaceut Tech 3:1126–1131

    Google Scholar 

  • Chaturvedi V, Kumar A (2010b) Isolation of sodium dodecyl sulfate degrading strains from a detergent polluted pond situated in Varanasi city, India. J Cell Mol Biol 2:103–111

    Google Scholar 

  • Chaturvedi V, Kumar A (2011) Diversity of culturable sodium dodecyl sulfate (SDS) degrading bacteria isolated from detergent contaminated ponds situated in Varanasi city, India. Int Biodeterior Biodegrad 65:961–971

    CAS  Google Scholar 

  • Chen J, Song X, Zhang H, Qu Y, Miao J (2006) Sophorolipid produced from the new yeast strain Wickerhamiella domercqiae induces apoptosis in H7402 human liver cancer cells. Appl Microbiol Biotechnol 72:52–59. doi:10.1007/s00253-005-0243-z

    CAS  Google Scholar 

  • Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93:915–929. doi:10.1046/j.1365-2672.01774

    CAS  Google Scholar 

  • Conry T (1980) Consumer’s guide to cosmetics. Ancor Press/Doubleday, Garden City, p 74

    Google Scholar 

  • Das K, Mukherjee AK (2007) Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains: role of biosurfactants in enhancing bioavailability. J Appl Microbiol 102:195–203

    CAS  Google Scholar 

  • Davison J, Fo Brunel, Phanopoulos A, Prozzi D, Terpstra P (1992) Cloning and sequencing of Pseudomonas genes determining sodium dodecyl sulfate biodegradation. Gene 114:19–24

    CAS  Google Scholar 

  • De Neve G (2009) Power, inequality and corporate social responsibility: the politics of ethical compliance in the South Indian garment industry. Econ Polit Wkly 44:63–71

    Google Scholar 

  • De Oliveira LL, Costa RB, Okada DY, Vich DV, Duarte IC, Silva EL, Varesche MB (2010) Anaerobic degradation of linear alkylbenzene sulfonate (LAS) in fluidized bed reactor by microbial consortia in different support materials. Bioresour Technol 101:5112–5122. doi:10.1016/j.biortech.2010.01.141

    Google Scholar 

  • Dehghani MH, Najafpoor AA, Azam K (2010) Using sonochemical reactor for degradation of LAS from effluent of wastewater treatment plant. Desalination 250:82–86

    CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  Google Scholar 

  • Deschenes L, Lafrance P, Villeneuve JP, Samson R (1996) Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Appl Microbiol Biotechnol 46:638–646

    CAS  Google Scholar 

  • Doyle C (2010) Powerful choices podcast: dispelling cancer myths. www.cancer.org

  • Eniola KT (2012) Effect of nitrogen supplementation on aerobic degradation of LAS by consortia of bacteria. J Xenobiot 2(e5):24–27

    Google Scholar 

  • Farzaneh H, Fereidon M, Noor A, Naser G (2010) Biodegradation of dodecylbenzene sulfonate sodium by Stenotrophomonas maltophilia biofilm. Afr J Biotechnol 9:55–62

    CAS  Google Scholar 

  • Feitkenhauer H, Meyer U (2002) Anaerobic digestion of alcohol sulfate (anionic surfactant) rich wastewater batch experiments. Part II: influence of the hydrophobic chain length. Bioresour Technol 82:123–129

    CAS  Google Scholar 

  • Field JA, Leenheer JA, Thorn KA, Barber LLB, Rostad C, Macalady DL, Daniel SR (1992) Identification of persistent anionic surfactant-derived chemicals in sewage effluent and groundwater. J Contam Hydrol 9:55–78

    CAS  Google Scholar 

  • Foley P, Beach ES, Zimmerman JB (2012) Derivation and synthesis of renewable surfactants. Chem Soc Rev 41:1499–1518

    CAS  Google Scholar 

  • Fox K, Holt M, Daniel M, Buckland H, Guymer I (2000) Removal of linear alkylbenzene sulfonate from a small Yorkshire stream: contribution to great-er project 7. Sci Total Environ 251:265–275

    Google Scholar 

  • Georgia FR, Poe CF (1931) Study of bacterial fluorescence in various media: I. Inorganic substances necessary for bacterial fluorescence. J Bacteriol 22:349

    CAS  Google Scholar 

  • Georgiou G, Lin SC, Sharma MM (1992) Surface-active compounds from microorganisms. Nat Biotechnol 10:60–65

    CAS  Google Scholar 

  • Ghai VU (2011) Say no to chemical detergents. http://EzineArticles.com/?expert=Vineet_U_Ghai

  • Ghazali R (2002) The effect of disalt on the biodegradability of methyl ester sulfonates (MES). J Oil Palm Res 14:45–50

    CAS  Google Scholar 

  • Ginkel CG (1989) Complete degradation of xenobiotic surfactants by consortia of aerobic microorganisms. Biodegradation 7:151–164

    Google Scholar 

  • Goel G, Kaur S (2012) A study on chemical contamination of water due to household laundry detergents. J Hum Ecol 38:65–69

    Google Scholar 

  • Gonzalez S, Lopez-Roldan R, Cortina JL (2012) Presence and biological effects of emerging contaminants in Llobregat River basin: a review. Environ Pollut 161:83–92. doi:10.1016/j.envpol.2011.10.002

    CAS  Google Scholar 

  • Grant RL, Yao C, Gabaldon D, Acosta D (1992) Evaluation of surfactant cytotoxicity potential by primary cultures of ocular tissues: I. Characterization of rabbit corneal epithelial cells and initial injury and delayed toxicity studies. Toxicology 76:153–176

    CAS  Google Scholar 

  • Hidaka H (1998) Photodegradation of surfactants with TiO2 semiconductor for the environmental wastewater treatment. J Chem Sci 110:215–228

    CAS  Google Scholar 

  • Holt MS, Matthus E, Waters J (1989) The concentrations and fate of linear alkylbenzene sulfonate in sludge amended soils. Water Res 23:749–759

    CAS  Google Scholar 

  • Hosseini F, Malekzadeh F, Amirmozafari N, Ghaemi N (2007) Biodegradation of anionic surfactants by isolated bacteria from activated sludge. Int J Environ Sci Technol 4:127–132

    CAS  Google Scholar 

  • Hsu YC (1963) Detergent (sodium lauryl sulfate)-splitting enzyme from bacteria. Nature 200:1091–1092. doi:10.1038/2001091b0

    CAS  Google Scholar 

  • Huddleston RL, Allred RC (1963) Microbial oxidation of sulfonated alkylbenzenes. Dev Ind Microbiol 4:24–38

    Google Scholar 

  • Ikehata K, El-Din MG (2004) Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: a review. Ozone Sci Eng 26:327–343. doi:10.1080/01919510490482160

    CAS  Google Scholar 

  • Ishigami Y, Suzuki S (1997) Development of biochemicals-functionalization of biosurfactants and natural dyes. Prog Org Coat 31:51–61

    CAS  Google Scholar 

  • Ivankovic T, Hrenovic J, Gudelj I (2009) Toxicity of commercial surfactants to phosphate-accumulating bacterium. Acta Chim Slov 56:1003–1009

    CAS  Google Scholar 

  • Jovanic BR, Bojovic S, Panic B, Radenkovic B, Despotovic M (2010) The effect of detergent as polluting agent on the photosynthetic activity and chlorophyll content in bean leaves. Health 2:395–399

    Google Scholar 

  • Jovcic B, Venturi V, Davison J, Topisirovic L, Kojic M (2010) Regulation of the sdsA alkyl sulfatase of Pseudomonas sp. ATCC 19151 and its involvement in degradation of anionic surfactants. J Appl Microbiol 109:1076–1083

    CAS  Google Scholar 

  • Kado CI, Liu ST (1981) Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365–1373

    CAS  Google Scholar 

  • Kanchi S, Niranjan T, Babu Naidu K, Naidu Venkatasubba N (2012) Monitoring the status of anionic surfactants in various water systems in urban and rural areas of Tirupati, Andhra Pradesh, South India. Int J Res Chem Environ 2:144–156

    CAS  Google Scholar 

  • Khurana R (2002) Detergents: counting the cost of cleanliness. Toxic Link Fact Sheet 16:1–4

    Google Scholar 

  • Klebensberger J, Rui O, Fritz E, Schink B, Philipp B (2006) Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate. Arch Microbiol 185:417–427

    CAS  Google Scholar 

  • Korzenowski C, Martins MBO, AaM Bernardes, Ferreira JZ, Duarte ECNF, De Pinho MN (2012) Removal of anionic surfactants by nanofiltration. Desalin Water Treat 44:269–275

    CAS  Google Scholar 

  • Kostal J, Suchanek M, Klierova H, Demnerova K, Kralova B, McBeth DL (1998) Pseudomonas C12B, an SDS degrading strain, harbours a plasmid coding for degradation of medium chain length n-alkanes. Int Biodeterior Biodegrad 42:221–228

    CAS  Google Scholar 

  • Kuhnt G (1993) Behavior and fate of surfactants in soil. Environ Toxicol Chem 12:1813–1820

    CAS  Google Scholar 

  • Kumar CG, Mamidyala SK (2011) Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 84(2):462–466. doi:10.1016/j.colsurfb.2011.01.042

    CAS  Google Scholar 

  • Lang S (2002) Biological amphiphiles (microbial biosurfactants). Curr Opin Colloid Interface Sci 7:12–20

    CAS  Google Scholar 

  • Lewis MA (1990) Chronic toxicities of surfactants and detergent builders to algae: a review and risk assessment. Ecotoxicol Environ Safe 20:123–140

    CAS  Google Scholar 

  • Lewis MA (1991) Chronic and sublethal toxicities of surfactants to aquatic animals: a review and risk assessment. Water Res 25:101–113

    CAS  Google Scholar 

  • Lima TM, Procopio LC, Brandao FD, Leao BA, Totola MR, Borges AC (2011) Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms. Bioresour Technol 102:2957–2964

    CAS  Google Scholar 

  • Long M, Ruan L, Li F, Yu Z, Xu X (2011) Heterologous expression and characterization of a recombinant thermostable alkylsulfatase (sdsAP). Extremophiles 15:293–301

    CAS  Google Scholar 

  • Lopez-Vizcaino R, Saez C, Canzares P, Rodrigo MA (2012) Electrocoagulation of the effluents from surfactant-aided soil-remediation processes. Sep Purif Technol 98:88–93

    CAS  Google Scholar 

  • Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1:1–19

    Google Scholar 

  • Maksimov VN, Parshikova TV (2006) Influence of surfactants on the photosynthetic activity of algae. Hydrobiol J 42:67–76

    Google Scholar 

  • Mallatt J (1985) Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J Fish Aquat Sci 42:630–648

    CAS  Google Scholar 

  • Manousaki E, Psillakis E, Kalogerakis N, Mantzavinos D (2004) Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation. Water Res 38:3751–3759

    CAS  Google Scholar 

  • Marrakchi S, Maibach HI (2006) Sodium lauryl sulfate-induced irritation in the human face: regional and age-related differences. Skin Pharmacol Physiol 19:177–180

    CAS  Google Scholar 

  • Matsui S, Park H (2000) Morphological effects and ecotoxicity of nonionic and anionic surfactants to Closterium ehrenbergii using AGZI (algal growth and zygospore inhibition) test. Environ Eng Res 5(2):63–69

    Google Scholar 

  • Mercade ME, Manresa MA, Robert M, Espuny MJ, De Andres C, Guinea J (1993) Olive oil mill effluent (OOME). New substrate for biosurfactant production. Bioresour Technol 43:1–6

    CAS  Google Scholar 

  • Mireles JR, Toguchi A, Harshey RM (2001) Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854

    CAS  Google Scholar 

  • Mizumoto S, Hirai M, Shoda M (2007) Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Appl Microbiol Biotechnol 75:1267–1274

    CAS  Google Scholar 

  • Mukherjee AK (2007) Potential application of cyclic lipopeptide biosurfactants produced by Bacillus subtilis strains in laundry detergent formulations. Lett Appl Microbiol 45:330–335

    CAS  Google Scholar 

  • Muller MM, Hausmann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91(2):251–264. doi:10.1007/s00253-011-3368-2

    Google Scholar 

  • Mungray AK, Kumar P (2009) Fate of linear alkylbenzene sulfonates in the environment: a review. Int Biodeterior Biodegrad 63:981–987

    CAS  Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci 94:736–747

    CAS  Google Scholar 

  • Naldoni A, Schiboula A, Bianchi C, Bremner D (2011) Mineralisation of surfactants using ultrasound and the advanced fenton process. Water Air Soil Pollut 215:487–495

    CAS  Google Scholar 

  • Nguyen TT, Sabatini DA (2009) Formulating alcohol-free microemulsions using rhamnolipid biosurfactant and rhamnolipid mixtures. J Surfactants Deterg 12:109–115

    CAS  Google Scholar 

  • Nitschke M, Pastore GM (2004) Biosurfactant production by Bacillus subtilis using cassava-processing effluent. Appl Biochem Biotechnol 112:163–172

    CAS  Google Scholar 

  • Noordman WH, Janssen DB (2002) Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ Microbiol 68:4502–4508

    CAS  Google Scholar 

  • Ostroumov SA (2003) Studying effects of some surfactants and detergents on filter-feeding bivalves. Hydrobiologia 500:341–344

    CAS  Google Scholar 

  • Ostroumov SA, Widdows J (2006) Inhibition of mussel suspension feeding by surfactants of three classes. Hydrobiologia 556:381–386

    CAS  Google Scholar 

  • Oya M, Hisano N (2010) Decreases in surface activities and aquatic toxicities of linear alkylbenzene sulfonate and alcohol ethoxylates during biodegradation. J Oleo Sci 59:31–39

    CAS  Google Scholar 

  • Patel RM, Desai AJ (1997) Biosurfactant production by Pseudomonas aeruginosa GS3 from molasses. Lett Appl Microbiol 25:91–94

    CAS  Google Scholar 

  • Patel MK, Theiss A, Worrell E (1999) Surfactant production and use in Germany: resource requirements and CO2 emissions. Resour Conserv Recycl 25:61–78

    Google Scholar 

  • Payne WJ, Feisal VE (1963) Bacterial utilization of dodecyl sulfate and dodecyl benzene sulfonate. Appl Microbiol 11:339–344

    CAS  Google Scholar 

  • Perez T, Sarrazin L, Rebouillon P, Vacelet J (2002) First evidences of surfactant biodegradation by marine sponges (Porifera): an experimental study with a linear alkylbenzene sulfonate. Hydrobiologia 489:225–233

    CAS  Google Scholar 

  • Petrovic M, Fernandez-Alba AR, Borrull F, Marce RM, Mazo EG, Barcelo D (2002) Occurrence and distribution of nonionic surfactants, their degradation products, and linear alkylbenzene sulfonates in coastal waters and sediments in Spain. Environ Toxicol Chem 21:37–46

    CAS  Google Scholar 

  • Poremba K, Gunkel W, Lang S, Wagner F (1991) Toxicity testing of synthetic and biogenic surfactants on marine microorganisms. Environ Toxicol Water Qual 6:157–163

    CAS  Google Scholar 

  • Ramarathnam R, Bo S, Chen Y, Fernando WGD, Xuewen G, De Kievit T (2007) Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 53:901–911

    CAS  Google Scholar 

  • Razafindralambo H, Paquot M, Baniel A, Popineau Y, Hbid C, Jacques P, Thonart P (1996) Foaming properties of surfactin, a lipopeptide biosurfactant from Bacillus subtilis. J Am Oil Chem Soc 73:149–151. doi:10.1007/BF02523463

    CAS  Google Scholar 

  • Rebello S, Asok AK, Joseph SV, Joseph BV, Jose L, Mundayoor S, Jisha MS (2013a) Bioconversion of sodium dodecyl sulphate to rhamnolipid by Pseudomonas aeruginosa: a novel and cost-effective production strategy. Appl Biochem Biotechnol 169(2):418–430. doi:10.1007/s12010-012-9988-x

    CAS  Google Scholar 

  • Rebello S, Asok AK, Mundayoor S, Jisha MS (2013b) Surfactants toxicity and remediation. Pollutant diseases, remediation and recycling in. Environ Chem Sustain World 4:277–320

    Google Scholar 

  • Ribelles A, Carrasco MC, Rosety M, Aldana M (1995) A histochemical study of the biological effects of sodium dodecyl sulfate on the intestine of the gilthead seabream, Sparus aurata L. Ecotoxicol Environ Safe 32:131–138

    CAS  Google Scholar 

  • Rico-Rico A, Temara A, Behrends T, Hermens JLM (2009) Effect of sediment properties on the sorption of C12-2-LAS in marine and estuarine sediments. Environ Pollut 157:377–383

    CAS  Google Scholar 

  • Rinallo C, Bennici A, Cenni E (1988) Effects of two surfactants on Triticum durum Desf. plantlets. Environ Exp Bot 28:367–374

    CAS  Google Scholar 

  • Rivera-Utrilla J, Mendez-Diaz J, Sanchez-Polo M, Ferro-Garcia MA, Bautista-Toledo I (2006) Removal of the surfactant sodium dodecylbenzene sulfonate from water by simultaneous use of ozone and powdered activated carbon: comparison with systems based on O3 and O3/H2O2. Water Res 40:1717–1725

    CAS  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    CAS  Google Scholar 

  • Romanelli MF, Moraes MCF, Villavicencio ALCH, Borrely SI (2004) Evaluation of toxicity reduction of sodium dodecyl sulfate submitted to electron beam radiation. Radiat Phys Chem 71:411–413

    CAS  Google Scholar 

  • Rosety-Rodríguez M, Ordonez FJ, Roldan S, Rosety JM, Rosety M, Ribelles A, Carrasco C, Rosety I (2002) Acute effects of sodium dodecyl sulfate on the survival and on morpho-histochemical characteristics of the trunk kidney of juvenile turbot Scophthalmus maximus L. Eur J Histochem 46:179–184

    Google Scholar 

  • Sanchez-Peinado MM, Rodelas B, Martinez-Toledo MV, Gonzalez-Lopez J, Pozo C (2009) Response of soil enzymes to linear alkylbenzene sulfonate (LAS) addition in soil microcosms. Soil Biol Biochem 41:69–76

    Google Scholar 

  • Schleheck D, Dong W, Denger K, Heinzle E, Cook AM (2000) An α-proteobacterium converts linear alkylbenzenesulfonate surfactants into sulfophenyl carboxylates and linear alkyldiphenyletherdisulfonate surfactants into sulfodiphenyl-ethercarboxylates. Appl Environ Microbiol 66:1911–1916

    CAS  Google Scholar 

  • Schleheck D, Knepper TP, Fischer K, Cook AM (2004) Mineralization of individual congeners of linear alkylbenzene sulfonate by defined pairs of heterotrophic bacteria. Appl Environ Microbiol 70:4053–4063

    CAS  Google Scholar 

  • Schweigert MK, Mackenzie DP, Sarlo K (2000) Occupational asthma and allergy associated with the use of enzymes in the detergent industry a review of the epidemiology, toxicology and methods of prevention. Clin Exp Allergy 30:1511–1518

    CAS  Google Scholar 

  • Sequeira CAC (1994) Environmental oriented electrochemistry. Studies in environmental science 59. Elsevier, Amsterdam

    Google Scholar 

  • Setzkorn EA, Huddleston RL (1965) Ultraviolet spectroscopic analysis for following the biodegradation of hydrotropes. J Am Oil Chem Soc 42:1081–1084

    CAS  Google Scholar 

  • Shabtai Y (1990) Production of exopolysaccharides by Acinetobacter strains in a controlled fed-batch fermentation process using soap stock oil (SSO) as carbon source. Int J Biol Macromol 12:145–152

    CAS  Google Scholar 

  • Shah V, Doncel GF, Seyoum T, Eaton KM, Zalenskaya I, Hagver R, Azim A, Gross R (2005) Sophorolipids, microbial glycolipids with anti-human immunodeficiency virus and sperm-immobilizing activities. Antimicrob Agents Chemother 49:4093–4100. doi:10.1128/AAC.49.10.4093-4100.2005

    CAS  Google Scholar 

  • Shukor MY, Husin WSW, Rahman MFA, Shamaan NA, Syed MA (2009) Isolation and characterization of an SDS-degrading Klebsiella oxytoca. J Environ Biol 30:129–134

    CAS  Google Scholar 

  • Singh KL, Kumar A (1998) Short communication: Bacillus cereus capable of degrading SDS shows growth with a variety of detergents. World J Microbiol Biotechnol 14:777–779

    CAS  Google Scholar 

  • Singh S, Patel P, Jaiswal S, Prabhune AA, Ramana CV, Prasad BLV (2009) A direct method for the preparation of glycolipid-metal nanoparticle conjugates: sophorolipids as reducing and capping agents for the synthesis of water re-dispersible silver nanoparticles and their antibacterial activity. New J Chem 33:646–652

    CAS  Google Scholar 

  • Stalmans M, Berenbold H, Berna JL, Cavalli L, Dillarstone A, Franke M et al. (1995) European life-cycle inventory for detergent surfactants production. Tenside Surfactants Deterg 32(2):84–109

    Google Scholar 

  • Standard PG, Ahearn DG (1970) Effects of alkylbenzene sulfonates on yeasts. Appl Microbiol 20:646

    CAS  Google Scholar 

  • Stipcevic T, Piljac A, Piljac G (2006) Enhanced healing of full-thickness burn wounds using di-rhamnolipid. Burns 32:24–34

    Google Scholar 

  • Susmi TS, Rebello S, Jisha MS, Sherief PM (2010) Toxic effects of sodium dodecyl sulfate on grass carp Ctenopharyngodon idella. Fish Technol 47(2):157–162

    Google Scholar 

  • Swisher RD (1963) Biodegradation of ABS in relation to chemical structure. J (Water Pollut Control Fed) 35:877–892

    Google Scholar 

  • Swisher RD (1967) Biodegradation of LAS benzene rings in activated sludge. J Am Oil Chem Soc 44:717–724

    CAS  Google Scholar 

  • Tharapiwattananon N, Scamehorn JF, Osuwan S, Harwell JH, Haller KJ (1996) Surfactant recovery from water using foam fractionation. Sep Sci Technol 31:1233–1258

    CAS  Google Scholar 

  • Thomas OR, White GF (1989) Metabolic pathway for the biodegradation of sodium dodecyl sulfate by Pseudomonas sp. C12B. Biotechnol Appl Biochem 11:318–327

    CAS  Google Scholar 

  • Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60:258–263

    CAS  Google Scholar 

  • USEPA (2008) Zonix. www.epa.gov/pesticides/biopesticides/ingredients/product/prod_110029.htm

  • Vakil H, Sethi S, Fu S, Stanek A, Wallner S, Gross R (2010) Sophorolipids decrease pulmonary inflammation in a mouse asthma model. Mod Pathol 23:392A

    Google Scholar 

  • Van Bogaert INA, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme EJ (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76:23–34

    Google Scholar 

  • Van de Plassche EJ, de Bruijn JHM, Stephenson RR, Marshall SJ, Feijtel TCJ, Belanger SE (1999) Predicted no effect concentrations and risk characterization of four surfactants: linear alkyl benzene sulfonate, alcohol ethoxylates, alcohol ethoxylated sulfates, and soap. Environ Toxicol Chem 18:2653–2663

    Google Scholar 

  • Vaz DA, Gudina EJ, Alameda EJ, Teixeira JA, Rodrigues LR (2012) Performance of a biosurfactant produced by a Bacillus subtilis strain isolated from crude oil samples as compared to commercial chemical surfactants. Colloids Surf B 89:167–174

    CAS  Google Scholar 

  • Velikonja J, Kosaric N (1993) Biosurfactants in food applications. In: Kosaric N (ed) Biosurfactants—production, properties and applications. New York: Marcel Dekker, pp 419–446

  • Vigon BW, Rubin AJ (1989) Practical considerations in the surfactant-aided mobilization of contaminants in aquifers. J Water Pollut Control Fed 61(7):1233–1240

    CAS  Google Scholar 

  • Weuthen M, Kawa R, Hill K, Ansmann A (1995) Long chain alkyl polyglycosides—a new generation of emulsifiers. Lipid/Fett 97:209–211

    CAS  Google Scholar 

  • Williams J, Payne WJ (1964) Enzymes induced in a bacterium by growth on sodium dodecyl sulfate. Appl Microbiol 12:360–362

    CAS  Google Scholar 

  • Xie Y, Ye R, Liu H (2007) Microstructure studies on biosurfactant-rhamnolipid/n-butanol/water/n-heptane microemulsion system. Colloids Surf A 292:189–195

    CAS  Google Scholar 

  • Yadav JS, Lawrence DL, Nuck BA, Federle TW, Reddy CA (2001) Biotransformation of linear alkylbenzene sulfonate (LAS) by Phanerochaete chrysosporium: oxidation of alkyl side-chain. Biodegradation 12:443–453

    CAS  Google Scholar 

  • Yeldho D, Rebello S, Jisha MS (2011) Plasmid-mediated biodegradation of the anionic surfactant sodium dodecyl sulfate, by Pseudomonas aeruginosa S7. Bull Environ Contam Toxicol 86:110–113

    CAS  Google Scholar 

  • York JD, Firoozabadi A (2008) Comparing effectiveness of rhamnolipid biosurfactant with a quaternary ammonium salt surfactant for hydrate anti-agglomeration. J Phys Chem B 112(3):845–851. doi:10.1021/jp077271h

    CAS  Google Scholar 

  • Yuksel E, Sengil IA, Ozacar M (2009) The removal of sodium dodecyl sulfate in synthetic wastewater by peroxi-electrocoagulation method. Chem Eng J 152:347–353

    CAS  Google Scholar 

  • Zajic JE, Guignard H, Gerson DF (1977) Properties and biodegradation of a bioemulsifier from Corynebacterium hydrocarboclastus. Biotechnol Bioeng 19:1303–1320

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Jisha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebello, S., Asok, A.K., Mundayoor, S. et al. Surfactants: toxicity, remediation and green surfactants. Environ Chem Lett 12, 275–287 (2014). https://doi.org/10.1007/s10311-014-0466-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-014-0466-2

Keywords

Navigation