Skip to main content
Log in

Antioxidant, anti-inflammatory, and analgesic activities of Citrus reticulata Blanco leaves extracts: An in vivo and in vitro study

Activités antioxydantes, anti-inflammatoires et analgésiques des extraits des feuilles de Citrus reticulata Blanco: étude in vivo et in vitro

  • Aromathérapie Expérimentale
  • Published:
Phytothérapie

Abstract

Citrus species are cultivated and consumed widely. Citrus have been investigated for their pharmacological activity and human health. Their beneficial effects include antibacterial, analgesic, anti-inflammatory, and antitumoral effects. This studywas designed to evaluate the analgesic effect and the antioxidant and anti-inflammatory activities of Citrus reticulata Blanco leaves extracts (ECR) in cell and animal models. Antioxidant, anti-inflammatory, and antinociceptive activities were evaluated in mice using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical inhibition, xylene-induced ear edema, formalin assay and acetic acid-writhing response. Expression of antiinflammatory genes was measured in lipopolysaccharide (LPS)-treated Huh7 cells. ECR showed a significant DPPH radical scavenging activity. No behavioral changes or deaths were observed in mice at doses less than 2,000 mg/kg body weight. Different concentrations of methanolic and aqueous extracts (100–500 mg/kg body wt.) reduced the duration of linking behavior in the second phase of the formalin chemical nociception assay and decreased the number of acetic acidinduced writhing responses in mice, indicating significant analgesic activity. ECR also diminished xylene-induced ear swelling in mice, suggesting an in vivo anti-inflammatory action. No toxicity of ECR in the range of 0.1–10 μg/ml was observed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Cell treatment with LPS-induced oxidative/nitrosative stress as assessed by flow cytometry as the fluorescence of 2′,7′-dichlorofluorescein. This effect was significantly inhibited in a dose-dependent manner by ECR. Administration of ECR caused a dose-dependent inhibition of cytochrome P450 2E1, inducible nitric oxide synthase, tumor necrosis factor α, and interleukin-6 expression in LPS-treated cells. The present study demonstrates that extracts of Citrus reticulata leaves are safe, having antioxidant, anti-inflammatory, and analgesic effects both in vivo and in vitro.

Résumé

Les citrus sont cultivés et consommés largement. Les citrus ont été étudiés pour leur activité pharmacologique et leurs avantages sur la santé humaine. Ces bienfaits incluent l’activité antibactérienne, analgésique, antiinflammatoire et antitumorale. Cette étude a été conçue pour évaluer l’effet analgésique et l’acticité antioxydante et anti-inflammatoire des extraits des feuilles de Citrus reticulata Blanco (ECR) dans des modèles cellulaires et animaux. Les activités antioxydante, anti-inflammatoire et antinociceptive ont été évaluées chez des souris en utilisant l’inhibition du radical DPPH, l’oedème de l’oreille induit par le xylène, test de formaline et writhing reponse par l’acide acétique. L’expression des gènes anti-inflammatoires a été évaluée dans les cellules Huh7 traitées par le lipopolysaccharide (LPS). L’ECR a montré une activité antiradicalaire visà- vis du 1,1-diphenyl-2-picryl-hydrazyl (DPPH). Aucun changement de comportement ni de décès n’ont été observés chez les souris à des doses inférieures à 2 000 mg/kg de poids corporel. Les différentes concentrations des extraits aqueux et méthanoliques (100–500 mg/kg poids corporel) ont réduit la durée de léchage dans la deuxième phase de l’essai de la nociception chimique de formaline et ont diminué le nombre de torsions induites par l’acide acétique chez les souris, ce qui indique une activité antalgique significative. L’ECR a également diminué l’oedème de l’oreille induit par le xylène chez les souris, ce qui suggère une action anti-inflammatoire in vivo. Aucune toxicité de l’ECR dans la gamme de 0,1–10 μg/ml n’a été observée avec le bromure de 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT). Le traitement des cellules avec du LPS induit le stress oxydatif/nitrosatif tel qu’évalué par la cytométrie en flux en tant que fluorescence de 2′,7′-dichlorofluorescéine. Cet effet a été significativement inhibé par l’ECR de manière dose-dépendante. L’administration d’ECR a provoqué une inhibition dose-dépendante du cytochrome P450 (CYP) 2E1, de l’oxyde nitrique synthase inductible (iNOS), du facteur de nécrose tumorale (TNF)α et de l’expression de l’interleukine (IL)-6, dans les cellules traitées par le LPS. La présente étude démontre que les extraits des feuilles de Citrus reticulata ne sont pas dangereux, et possèdent des effets antioxydants, anti-inflammatoires et analgésiques in vivo et in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CYP:

cytochrome

DCF:

2′,7′-dichlorofluorescein

DCFH-DA:

2′,7′-dichlorodihydrofluorescein diacetate

DPPH:

1,1-diphenyl-2-picrylhydrazyl

ECR:

Citrus reticulate Blanco leaves extracts

GAE:

gallic acid equivalents

IL:

interleukin

iNOS:

inducible nitric oxide synthase

LPS:

lipopolysaccharide

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NF-κB:

nuclear factor kappa B

NSAIDs:

nonsteroidal anti-inflammatory drugs

RNS:

nitrogen species

ROS:

reactive oxygen

TNF:

tumor necrosis factor

References

  1. Ghosh R, Alajvegovic A, Gomes AV (2015) NSAIDs and cardiovascular diseases: Role of reactive oxygen species. Oxid Med Cell Longev 2015:536962

    Article  PubMed  PubMed Central  Google Scholar 

  2. González Gallego J, García-Mediavilla MV, Sánchez-Campos S, et al (2010) Fruit polyphenols, immunity and inflammation. Br J Nutr 104:S15–27

    Article  PubMed  Google Scholar 

  3. Wallace JL, Vong L (2008) NSAID-induced gastrointestinal damage and the design of GI-sparing NS. Curr Opin Investig Drugs 9:1151–6

    CAS  PubMed  Google Scholar 

  4. Pisonero-Vaquero S, Martínez-Ferreras Á, García-Mediavilla MV, et al (2015) Quercetin ameliorates dysregulation of lipid metabolism genes via the PI3K/AKT pathway in a diet-induced mouse model of nonalcoholic fatty liver disease. Mol Nutr Food Res 59:879–93

    Article  CAS  PubMed  Google Scholar 

  5. Shah AS, Alagawadi KR (2011) Anti-inflammatory, analgesic and antipyretic properties of Thespesia populnea Soland ex. Correa seed extracts and its fractions in animal models. J Ethnopharmacol 137:1504–9

    CAS  PubMed  Google Scholar 

  6. Lota ML, de Rocca Serra D, Tomi F, et al (2000) Chemical variability of peel and leaf essential oils of mandarins from Citrus reticulata Blanco. Biochem Syst Ecol 28:61–78

    Article  CAS  Google Scholar 

  7. Álvarez B, Ramón-Laca L (2005) Pharmacological properties of citrus and their ancient and medieval uses in the Mediterranean region. J Ethnopharmacol 97:89–95

    Article  Google Scholar 

  8. Perez YY, Jimenez-Ferrer E, Alonso D, et al (2010) Citrus limetta leaves extract antagonizes the hypertensive effect of angiotensin II. J Ethnopharmacol 128:611–4

    Article  PubMed  Google Scholar 

  9. Dallas C, Gerbi A, Elbez Y, et al (2014) Clinical study to assess the efficacy and safety of a citrus polyphenolic extract of red orange, grapefruit, and orange (Sinetrol-XPur) on weight management and metabolic parameters in healthy overweight individuals. Phytother Res 28:212–18

    Article  CAS  PubMed  Google Scholar 

  10. Graziano AC, Cardile V, Crascì L, et al (2012) Protective effects of an extract from Citrus bergamia against inflammatory injury in interferon-? and histamine exposed human keratinocytes. Life Sci 90:968–74

    Article  CAS  PubMed  Google Scholar 

  11. Singh J, Sood S, Muthuraman A (2014) In-vitro evaluation of bioactive compounds, anti-oxidant, lipid peroxidation and lipoxygenase inhibitory potential of Citrus karna L. peel extract. J Food Sci Technol 51:67–74

    Article  CAS  PubMed  Google Scholar 

  12. Zhou Z, Xi W, Hu Y, et al (2016) Antioxidant activity of Citrus fruits. Food Chem 196:885–96

    Article  PubMed  Google Scholar 

  13. García BF, Torres A, Macias FA (2015) Synergy and other interactions between polymethoxiflavones from Citrus byproducts. Molecules 20:20079–106

    Article  PubMed  Google Scholar 

  14. Chutia M, Deka Bhuyan P, Pathak MG, et al (2009) Antifungal activity and chemical composition of Citrus reticulata Blanco essential oil against phytopathogens from North East India. Food Sci Technol 42:777–80

    CAS  Google Scholar 

  15. Chen J, Zhuang D, Cai W, et al (2009) Inhibitory effects of four plants flavonoids extracts on fatty acid synthase. J Environ Sci 21:S131–S4

    Article  Google Scholar 

  16. Kim MJ, Park HJ, Hong MS, et al (2005) Citrus reticulata Blanco induces apoptosis in human gastric cancer cells SNU-668. Nutr Cancer 51:78–82

    Article  PubMed  Google Scholar 

  17. Fan K, Kurihara N, Abe S, et al (2007) Chemopreventive effects of orange peel extract (OPE). I: OPE inhibits intestinal tumor growth in ApcMin/+ mice. J Med Food 10:11–7

    CAS  PubMed  Google Scholar 

  18. Jung KH, Ha E, Kim MJ, et al (2007) Suppressive effects of nitirc oxide (NO) production and inducible nitric oxide synthase (iNOS) expression by Citrus reticulata extract in RAW 264.7 macrophage cells. Food Chem Toxicol 47:1545–59

    Article  Google Scholar 

  19. Xiu LJ, Sun DZ, Jiao JP, et al (2015) Anticancer effects of traditional Chinese herbs with phlegm-eliminating properties — An overview. J Ethnopharmacol 172:155–61

    Article  PubMed  Google Scholar 

  20. Parhiz H, Roohbakhsh A, Soltani F, et al (2015) Antioxidant ansd anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Pytother Res 29:323–31

    Article  CAS  Google Scholar 

  21. Zhang Y, Sun Y, Xi W, et al (2014) Phenolic compositions and antioxidant capacities of Chinese wild mandarin (Citrus reticulata Blanco) fruits. Food Chem 145:674–80

    Article  CAS  PubMed  Google Scholar 

  22. Lagha-Benamrouche S, Madani K (2013) Phenolic contents and antioxidant activity of orange varieties (Citrus sinensis L.and Citrus aurantium L.) cultivated in Algeria: peels and leaves. Ind Crops Prod 50:723–30

    Article  CAS  Google Scholar 

  23. Manthey JA, Bendele P (2008) Anti-inflammatory activity of an orange peel polymethoxylated flavone, 3',4',3,5,6,7,8-heptamethoxyflavone, in the rat carrageenan/paw edema and mouse lipopolysaccharide-challenge assays. J Agric Food Chem 22: 9399–403

    Article  Google Scholar 

  24. Gülçin Ì, Güngör SI, Beydemir S, et al (2004) Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chem 87:393–400

    Article  Google Scholar 

  25. Li BB, Smith B, Hossain MM (2006) Extraction of phenolics from citrus peels: I. Solvent extraction method. Sep Purif Technol 48:182–8

    Article  CAS  Google Scholar 

  26. Bahorun T, Gressier B, Trotin F, et al (1966) Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparations. Arzneimittel Forschung 46:1086–9

    Google Scholar 

  27. Cuendet M, Dyatmiko W, Potterat O, et al (1997) Iridoid glucosides with free radical scavenging properties from Fagvaea blumei. Helv Chim Acta 80:1144–52

    Article  CAS  Google Scholar 

  28. Mota AS, de Lima AB, Albuquerque TL, et al (2015) Antinociceptive activity and toxicity evaluation of the fatty oil from Plukenetia polyadenia Mull. Arg. (Euphorbiaceae). Molecules 20:7925–39

    Article  CAS  PubMed  Google Scholar 

  29. Xu Q, Wang Y, Guo S, et al (2014) Anti-inflammatory and analgesic activity of aqueous extract of Flos populi. J Ethnopharmacol 152:540–5

    Article  PubMed  Google Scholar 

  30. De la Puente B, Romero-Alejo E, Vela JM, et al (2015) Changes in saccharin preference behavior as a primary outcome to evaluate pain and analgesia in acetic acid-induced visceral pain in mice. J Pain Res 6:663–73

    Google Scholar 

  31. Crespo I, García-Mediavilla MV, Gutiérrez B, et al (2008) A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells. Br J Nutr 100:968–76

    Article  CAS  PubMed  Google Scholar 

  32. García-Mediavilla MV, Sánchez-Campos S, González-Pérez P, et al (2005) Differential contribution of hepatitis C virus NS5A and core proteins to the induction of oxidative and nitrosative stress in human hepatocyte-derived cells. J Hepatol 43:606–13

    Article  PubMed  Google Scholar 

  33. Pisonero-Vaquero S, García-Mediavilla MV, Jorquera F, et al (2014) Modulation of PI3K-LXRalpha-dependent lipogenesis mediated by oxidative/nitrosative stress contributes to inhibition of HCV replication by quercetin. Lab Invest 94:262–74

    Article  CAS  PubMed  Google Scholar 

  34. Miquilena-Colina ME, Lima-Cabello E, Sánchez-Campos S, et al (2011) Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut 60:1394–402

    Article  CAS  PubMed  Google Scholar 

  35. Carbajo-Pescador S, Ordoñez R, Benet M, et al (2003) Inhibition of VEGF expression through blockade of Hif1a and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. Br J Cancer 109:83–91

    Article  Google Scholar 

  36. Karimi E, Oskoueian E, Hendra R, et al (2012) Phenolic compounds characterization and biological activities of Citrus aurantium bloom. Molecules 17:1203–18

    Article  CAS  PubMed  Google Scholar 

  37. Turkmen N, Sari F, Velioglu YS (2006) Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chem 99:835–41

    Article  CAS  Google Scholar 

  38. Metrouh-Amir H, Duarte CMM, Maiza F (2015) Solvent effect on total phenolic contents, antioxidant, and antibacterial activities of Matricaria pubescens. Ind Crops Prod 67:249–56

    Article  CAS  Google Scholar 

  39. Muthiah P, Asokkumar K (2012) In vitro antioxidant activities of leaves, fruits and peel extracts of citrus. Int J Phytopharmacy 2:13–20

    Google Scholar 

  40. Tripoli E, Guardia ML, Giammanco S, et al (2007) Citrus flavonoids: molecular structure, biological activity and nutritional properties: a review. Food Chem 104:466–79

    Article  CAS  Google Scholar 

  41. Bourgou S, Ksouri R, Bellila A, et al (2005) Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. C R Biol 331:48–55

    Article  Google Scholar 

  42. Wei L, Dong L, Zhao T, et al (2011) Analgesic and antiinflammatory effects of the amphibian neurotoxin, anntoxin. Biochimie 93:995–1000

    Article  CAS  PubMed  Google Scholar 

  43. Khan S, Mehmood MH, Ali AN, et al (2011) Studies on antiinflammatory and analgesic activities of betel nut in rodents. J Ethnopharmacol 135:654–61

    Article  CAS  PubMed  Google Scholar 

  44. Saragusti AC, Bustos PS, Pierosan L, et al (2012) Involvement of the L-arginine–nitric oxide pathway in the antinociception caused by fruits of Prosopis strombulifera (Lam.) Benth. J Ethnopharmacol 140:117–22

    Article  PubMed  Google Scholar 

  45. Thun MJ, Henley SJ, Patrono C (2002) Nonsteroidal antiinflammatory drugs as anticancer agents: Mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 94:252–66

    Article  CAS  PubMed  Google Scholar 

  46. Zakaria ZA, Ghani ZD, Nor RN, et al (2008) Antinociceptive, anti-inflammatory, and antipyretic properties of an aqueous extract of Dicranopteris linearis leaves in experimental animal models. J Nat Med 62:179–87

    Article  CAS  PubMed  Google Scholar 

  47. Ishola IO, Awodele O, Olusayero AM, et al (2014) Mechanisms of analgesis and anti-inflammatory properties of Annona muricata Linn. (annonaceae) fruit extract in rodents. J Med Food 17:1375–82

    CAS  PubMed  Google Scholar 

  48. He XY, Liu QC, Peng W, et al (2013) Bioactivities and serum pharmacochemistry of Qi-Wei-Xiao-Yan-Tang. Pharm Biol 51:629–34

    Article  CAS  PubMed  Google Scholar 

  49. Molinett S, Nuñez F, Moya-León MA (2015) Chilean strawberry consumption protects against LPS-induced liver injury by antiinflammatory and antioxidant capability in Sprague-Dawley rats. Evid Based Complement Alternat Med 2015:320136

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hassan W, Rongyin G, Daoud A, et al (2014) Reduced oxidative stress contributes to the lipid lowering effects of isoquercitrin in free fatty acids induced hepatocytes. Oxid Med Cell Longev 2014:313602

    Article  PubMed  PubMed Central  Google Scholar 

  51. Xing SQ, Zhang CG, Yuan JF, et al (2015) Adiponectin induces apoptosis in hepatocellular carcinoma through differential modulation of thioredoxin proteins. Biochem Pharmacol 93:221–31

    Article  CAS  PubMed  Google Scholar 

  52. Ho SC, Kuo CT (2014) Hesperidin, nobiletin, and tangeretin are collectively responsible for the anti-neuroinflammatory capacity of tangerine peel (Citrus reticulata epericarpium). Food Chem Toxicol 71:176–82

    Article  CAS  PubMed  Google Scholar 

  53. Saluk J, Bijak M, Posmyk MM, et al (2015) Red cabbage anthocyanins as inhibitors of lipopolysaccharide-induced oxidative stress in blood platelets. Int J Biol Macromol 80:702–9

    Article  CAS  PubMed  Google Scholar 

  54. Choi SY, Hwang JH, Ko HC, et al (2007) Nobiletin from citrus fruit peel inhibits DNA-binding activity of NF-kappaB abs ROS production in LPS-activated RAW 264.7 cells. J Ethnopharmacol 113:149–55

    Article  CAS  PubMed  Google Scholar 

  55. Tuñon MJ, García-Mediavilla MV, Sánchez-Campos S, et al (2009) Potential of flavonoids as anti-inflammatory agents: modulation of pro-inflammatory gene expression and signal transduction pathways. Curr Drug Metab 10:256–71

    Article  PubMed  Google Scholar 

  56. García-Mediavilla V, Crespo I, Collado PS, et al (2007) Antiinflammatory effect of the flavones quercetin and kaempferol in Chang Liver cells involves inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and downregulation of the nuclear factor kappaB pathway. Eur J Pharmacol 557:221–9

    Article  PubMed  Google Scholar 

  57. Marcolin E, San-Miguel B, Vallejo D, et al (2012) Quercetin treatment ameliorates inflammation and fibrosis in mice with nonalcoholic steatohepatitis. J Nutr 142:1821–8

    Article  CAS  PubMed  Google Scholar 

  58. Ihara I, Yamamoto H, Ida T, et al (2012) Inhibition of nitric oxide production and inducible nitric oxide synthase expression by a polymethoxy flavone from young fruits of Citrus unshiu in rat primary astrocytes. Biosci Biotechnol Biochem 76:1843–8

    Article  CAS  PubMed  Google Scholar 

  59. Kang SR, Han DY, Park KI, et al (2011) Suppressive effect on lpopolysaccharide-induced proinflammatory mediators by Citrus aurantium L. in macrophage RAW 264.7 cells via NF-kB signal pathway. Evid Based Complement Alternat Med 2011:248592

    Google Scholar 

  60. Lin N, Sato T, Takayama Y, et al (2003) Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem Pharmacol 65:2065–71

    Article  CAS  PubMed  Google Scholar 

  61. Cui Y, Wu J, Jung SC, et al (2010) Anti-neuroinflammatory activity of nobiletin on suppression of microglial activation. Biol Pharm Bull 33:1814–21

    Article  CAS  PubMed  Google Scholar 

  62. Yoshigai E, Machida T, Okuyama T, et al (2013) Citrus nobiletin suppreßses inducible nitric oxide synthase gene expression in interleukin-1ß-treated hepatocytes. Biochem Biophys Res Commun 439:54–9

    Article  CAS  PubMed  Google Scholar 

  63. Vafei Adou K, Vauzour D, Lee HY, et al (2009) The citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects against neuroinflammatory injury. Arch Biochem Biophys 484:100–9

    Article  CAS  Google Scholar 

  64. Yang HL, Chen SC, Senthil Kumar KJ, et al (2012) Antioxidant and anti-inflammatory potential of hesperetin metabolites obtained from hesperetin-administered rat serum: an ex vivo approach. J Agric Food Chem 60:522–32

    Article  CAS  PubMed  Google Scholar 

  65. Zhang S, Zheng L, Dong D, et al (2013) Effects of flavonoids from Rosa laevigata Michx fruit against high-fat diet-induced non-alcoholic fatty liver disease in rats. Food Chem 141:108–16

    Google Scholar 

  66. Cao Q, Mak K, Lieber C (2005) Cytochrome P4502E1 primes macrophages to increase TNF-alpha production in response to liposaccharide. Am J Physiol 289:G95–G107

    Article  CAS  Google Scholar 

  67. Abdulla D, Goralski KB, Renton KW (2006) The regulation of cytochrome P450 2E1 during LPS-induced inflammation in the rat. Toxicol Appl Pharmacol 216:1–10

    Article  CAS  PubMed  Google Scholar 

  68. Gaudineau C, Beckerman R, Welbourn S, et al (2004) Inhbition of human P450 enzymes by multiple constituents of the Gingko biloba extract. Biochem Biophys Res Commun 318:1072–8

    Article  CAS  PubMed  Google Scholar 

  69. Kusirisin W, Jaikang C, Chaiyasut C, et al (2009) Effect of polyphenolic compounds from Solanum torvum on plasma lipid peroxidation, superoxide anion and cytochrome P450 2E1 in human liver microsomes. Med Chem 5:583–8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Martínez-Flórez.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasri, M., Bedjou, F., Porras, D. et al. Antioxidant, anti-inflammatory, and analgesic activities of Citrus reticulata Blanco leaves extracts: An in vivo and in vitro study. Phytothérapie (2017). https://doi.org/10.1007/s10298-017-1094-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10298-017-1094-8

Keywords

Mots clés

Navigation