Skip to main content
Log in

Streptomyces albulus yields ε-poly-l-lysine and other products from salt-contaminated glycerol waste

  • Bioenergy/Biofuels/Biochemicals - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Actinomycetes are the most important microorganisms for the industrial production of secondary metabolites with antimicrobial and anticancer properties. However, they have not been implicated in biorefineries. Here, we study the ability of the ε-poly-l-lysine producing Streptomyces albulus BCRC 11814 to utilize biodiesel-derived crude glycerol. S. albulus was cultured in a mineral medium supplemented with up to 10% w/v sodium chloride or potassium chloride, and with crude glycerol as the sole carbohydrate source. Under these conditions, the strain produced 0.1 g ε-poly-l-lysine per 1 g of biomass. RNA sequencing revealed upregulation of the ectoine biosynthetic pathway of S. albulus, which provides proof of halotolerance. S. albulus has several silent secondary metabolite biosynthetic clusters predicted within the genome. Based on the results, we conclude that S. albulus BCRC 11814 is a halotolerant microorganism capable of utilizing biodiesel-derived crude glycerol better than other actinomycetes included in the present study. S. albulus has the potential to be established as microbial platform production host for a range of high-value biological products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Almeida JR, Favaro LC, Quirino BF (2012) Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels 5:48. https://doi.org/10.1186/1754-6834-5-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot (Tokyo) 65:385–395. https://doi.org/10.1038/ja.2012.27

    Article  CAS  Google Scholar 

  3. Borugadda VB, Goud VV (2012) Biodiesel production from renewable feedstocks: status and opportunities. Renew Sustain Energy Rev 16:4763–4784. https://doi.org/10.1016/j.rser.2012.04.010

    Article  CAS  Google Scholar 

  4. BP Statistical Review of World Energy (2018). https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf. Accessed 21 June 2018

  5. Chen X, Mao Z (2013) Comparison of glucose and glycerol as carbon sources for ε-poly-l-lysine production by Streptomyces sp. M-Z18. Appl Biochem Biotechnol 170:185–197. https://doi.org/10.1007/s12010-013-0167-5

    Article  CAS  PubMed  Google Scholar 

  6. Ciriminna R, Della Pina C, Rossi M, Pagliaro M (2014) Understanding the glycerol market. Eur J Lipid Sci Technol 116:1–8. https://doi.org/10.1002/ejlt.201400229

    Article  CAS  Google Scholar 

  7. Cray JA, Stevenson A, Ball P, Bankar SB, Eleutherio EC, Ezeji TC, Singhal RS, Thevelein JM, Timson DJ, Hallsworth JE (2015) Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. Curr Opin Biotechnol 33:228–259. https://doi.org/10.1016/j.copbio.2015.02.010

    Article  CAS  PubMed  Google Scholar 

  8. da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39. https://doi.org/10.1016/j.biotechadv.2008.07.006

    Article  CAS  PubMed  Google Scholar 

  9. de Lima Alves F, Stevenson A, Baxter E, Gillion JL, Hejazi F, Hayes S, Prior BA, McGenity TJ, Rangel DE, Magan N, Timmis KN, Hallsworth JE (2015) Concomitant osmotic and chaotropicity-induced stresses in Aspergillus wentii: compatible solutes determine the biotic window. Curr Genet 61:457–477. https://doi.org/10.1007/s00294-015-0496-8

    Article  CAS  Google Scholar 

  10. Dobson R, Gray V, Rumbold K (2012) Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biotechnol 39:217–226. https://doi.org/10.1007/s10295-011-1038-0

    Article  CAS  PubMed  Google Scholar 

  11. Dodd A, Swanevelder D, Featherston J, Rumbold K (2013) Draft genome sequence of Streptomyces albulus strain CCRC 11814, an ε-poly-l-lysine-producing actinomycete. Genome Announc 1:e00696-13. https://doi.org/10.1128/genomea.00696-13

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hallsworth JE, Heim S, Timmis KN (2003) Chaotropic solutes cause water stress in Pseudomonas putida. Environ Microbiol 5:1270–1280

    Article  CAS  Google Scholar 

  13. Hamano Y (2010) Biochemistry and enzymology of poly-epsilon-l-lysine biosynthesis. In: Hamano Y (ed) Amino-acid homopolymers occurring in nature. Springer, Berlin, pp 23–44. https://doi.org/10.1007/978-3-642-12453-2_2

    Chapter  Google Scholar 

  14. Hamano Y, Yoshida T, Kito M, Nakamori S, Nagasawa T, Takagi H (2006) Biological function of the pld gene product that degrades ε-poly-l-lysine in Streptomyces albulus. Appl Microbiol Biotechnol 72:173–181. https://doi.org/10.1007/s00253-006-0396-4

    Article  CAS  PubMed  Google Scholar 

  15. Hamedi J, Mohammadipanah F, Ventosa A (2013) Systematic and biotechnological aspects of halophilic and halotolerant actinomycetes. Extremophiles 17:1–13. https://doi.org/10.1007/s00792-012-0493-5

    Article  CAS  PubMed  Google Scholar 

  16. Hirohara H, Takehara M, Saimura M, Masayuki A, Miyamoto M (2006) Biosynthesis of poly(ε-l-lysine)s in two newly isolated strains of Streptomyces sp. Appl Microbiol Biotechnol 73:321–331. https://doi.org/10.1007/s00253-006-0479-2

    Article  CAS  PubMed  Google Scholar 

  17. Hoshino Y, Nakamori S, Takagi H (2003) Cloning and analysis of the β-lactamase gene from ε-poly-l-lysine-Producing actinomycete Streptomyces albulus IFO14147. J Biochem 134:473–478

    Article  CAS  Google Scholar 

  18. Kahar P, Iwata T, Hiraki J, Park EY, Okabe M (2001) Enhancement of ε-polylysine production by Streptomyces albulus strain 410 using pH control. J Biosci Bioeng 91:190–194

    Article  CAS  Google Scholar 

  19. Knocke C, Vogt J (2009) Biofuels—challenges & chances: how biofuel development can benefit from advanced process technology. Eng Life Sci 9:96–99. https://doi.org/10.1002/elsc.200700064

    Article  CAS  Google Scholar 

  20. Kol S, Elena Merlo M, Scheltema RA, De Vries M, Vonk RJ, Kikkert NA, Dijkhuizen L, Breitling R, Takano E (2010) Metabolomic characterization of the salt stress response in Streptomyces coelicolor. Appl Environ Microbiol 76:2574–2581. https://doi.org/10.1128/aem.01992-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee CS, Aroua MK, Daud WMAW, Cognet P, Pérès-Lucchese Y, Fabre PL, Reynes O, Latapie L (2015) A review: conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renew Sustain Energy Rev 42:963–972. https://doi.org/10.1016/j.rser.2014.10.033

    Article  CAS  Google Scholar 

  22. Martínez-Gómez K, Flores N, Castañeda HM, Martínez-Batallar G, Hernández-Chávez G, Ramírez OT et al (2012) New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microb Cell Fact 11:46. https://doi.org/10.1186/1475-2859-11-46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mu Y, Teng H, Zhang D, Wang W, Xiu Z (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol Lett 28:1755–1759. https://doi.org/10.1007/s10529-006-9154-z

    Article  CAS  PubMed  Google Scholar 

  24. Mustakhimov II, Reshetnikov AS, Khmelenina VN, Trotsenko YA (2010) Regulatory aspects of ectoine biosynthesis in halophilic bacteria. Microbiology 79:583–592. https://doi.org/10.1134/s0026261710050024

    Article  CAS  Google Scholar 

  25. Paterson G, Turner D, Wiese L, Van Zijl G, Clarke C, Van Tol J (2015) Spatial soil information in South Africa: situational analysis, limitations and challenges. S Afr J Sci 111:1–7. https://doi.org/10.17159/sajs.2015/20140178 (Art.#2014-0178)

    Article  Google Scholar 

  26. Reina-Bueno M, Argandoña M, Salvador M, Rodríguez-Moya J, Iglesias-Guerra F, Csonka LN, Nieto JJ, Vargas C (2012) Role of trehalose in salinity and temperature tolerance in the model halophilic bacterium Chromohalobacter salexigens. PLoS ONE 7:e33587. https://doi.org/10.1371/journal.pone.0033587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rumbold K, Van Buijsen HJJ, Overkamp KM, Van Groenestijn JM, Punt PJ, Van Der Werf MJ (2009) Microbial production host selection for converting second-generation feedstocks into bioproducts. Microb Cell Fact 8:64. https://doi.org/10.1186/1475-2859-8-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schwibbert K, Marin-Sanguino A, Bagyan I, Heidrich G, Lentzen G, Seitz H, Rampp M, Schuster SC, Klenk HP, Pfeiffer F, Oesterhelt D, Kunte HJ (2011) A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581T. Environ Microbiol 13:1973–1994. https://doi.org/10.1111/j.1462-2920.2010.02336.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen WC, Yang D, Ryser HJ (1984) Colorimetric determination of microgram quantities of polylysine by trypan blue precipitation. Anal Biochem 142:521–524

    Article  CAS  Google Scholar 

  30. Shima S, Matsuoka H, Iwamoto T, Sakai H (1984) Antimicrobial action of epsilon-poly-l-lysine. J Antibiot (Tokyo) 37:1449–1455

    Article  CAS  Google Scholar 

  31. Shukla SC, Singh A, Pandey AK, Mishra A (2012) Review on production and medical applications of ε-polylysine. Biochem Eng J 65:70–81. https://doi.org/10.1016/j.bej.2012.04.001

    Article  CAS  Google Scholar 

  32. Stevenson A, Hallsworth JE (2014) Water and temperature relations of soil Actinobacteria. Environ Microbiol Rep 6:744–755

    Article  CAS  Google Scholar 

  33. Stevenson A, Cray JA, Williams JP, Santos R, Sahay R, Neuenkirchen N, McClure CD, Grant IR, Houghton JD, Quinn JP, Timson DJ, Patil SV, Singhal RS, Antón J, Dijksterhuis J, Hocking AD, Lievens B, Rangel DE, Voytek MA, Gunde-Cimerman N, Oren A, Timmis KN, McGenity TJ, Hallsworth JE (2015) Is there a common water-activity limit for the three domains of life? ISME J 9:1333–1351. https://doi.org/10.1038/ismej.2014.219

    Article  CAS  PubMed  Google Scholar 

  34. Stevenson A, Hamill PG, Medina Á, Kminek G, Rummel J, Dijksterhuis J, Timson DJ, Magan N, Leong SL, Hallsworth JE (2017) Glycerol enhances fungal germination at the water- activity limit for life. Environ Microbiol 19:947–967. https://doi.org/10.1111/1462-2920.13530

    Article  CAS  PubMed  Google Scholar 

  35. Stevenson A, Hamill PG, O’Kane CJ, Kminek G, Rummel JD, Voytek MA, Dijksterhuis J, Hallsworth JE (2017) Aspergillus penicillioides differentiation and cell division at 0.585 water activity. Environ Microbiol 19:687–697. https://doi.org/10.1111/1462-2920.13597

    Article  CAS  PubMed  Google Scholar 

  36. Thompson JC, He BB (2006) Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl Eng Agric 22:261–265

    Article  Google Scholar 

  37. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano R, Medema MH (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243. https://doi.org/10.1093/nar/gkv437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang F, Hanna M, Sun R (2012) Value-added uses for crude glycerol—a by-product of biodiesel production. Biotechnol Biofuels 5:13. https://doi.org/10.1186/1754-6834-5-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the National Research Foundation (NRF) and the Department of Science and Technology (DST) Biocatalysis Initiative for their financial assistance. The opinions expressed and conclusions arrived at are those of the authors and are not necessarily attributable to the NRF from whom Amanda Dodd received an Innovation Doctoral Scholarship (Grant ID 83765, National Research Foundation of South Africa). The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Rumbold.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodd, A., Swanevelder, D., Zhou, N. et al. Streptomyces albulus yields ε-poly-l-lysine and other products from salt-contaminated glycerol waste. J Ind Microbiol Biotechnol 45, 1083–1090 (2018). https://doi.org/10.1007/s10295-018-2082-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2082-9

Keywords

Navigation