Skip to main content
Log in

Ribosome engineering and fermentation optimization leads to overproduction of tiancimycin A, a new enediyne natural product from Streptomyces sp. CB03234

  • Fermentation, Cell Culture and Bioengineering - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Tiancimycin (TNM) A, a recently discovered enediyne natural product from Streptomyces sp. CB03234, showed rapid and complete killing of cancer cells and could be used as a payload in antibody drug conjugates. The low yield of TNM A in the wild-type strain promoted us to use ribosome engineering and fermentation optimization for its yield improvement. The Streptomyces sp. CB03234-R-16 mutant strain with a L422P mutation in RpoB, the RNA polymerase β-subunit, was obtained from the rifamycin-resistant screening. After fermentation optimization, the titers of TNM A in Streptomyces sp. CB03234-R-16 reached to 22.5 ± 3.1 mg L−1 in shaking flasks, and 13 ± 1 mg L−1 in 15 L fermentors, which were at least 40-fold higher than that in the wild-type strain (~ 0.3 mg L−1). Quantitative real-time RT-PCR revealed markedly enhanced expression of key genes encoding TNM A biosynthetic enzymes and regulators in Streptomyces sp. CB03234-R-16. Our study should greatly facilitate the future efforts to develop TNM A into a clinical anticancer drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adrio JL, Demain AL (2006) Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev 30:187–214. https://doi.org/10.1111/j.1574-6976.2005.00009.x

    Article  CAS  PubMed  Google Scholar 

  2. Amadori S, Suciu S, Selleslag D, Aversa F, Gaidano G, Musso M, Annino L, Venditti A, Voso MT, Mazzone C, Magro D, De Fabritiis P, Muus P, Alimena G, Mancini M, Hagemeijer A, Paoloni F, Vignetti M, Fazi P, Meert L, Ramadan SM, Willemze R, de Witte T, Baron F (2016) Gemtuzumab Ozogamicin Versus Best Supportive Care in Older Patients with newly diagnosed acute myeloid leukemia unsuitable for Intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. J Clin Oncol 34:972–979. https://doi.org/10.1200/JCO.2015.64.0060

    Article  PubMed  Google Scholar 

  3. Baltz RH (2016) Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other Actinomycetes. J Ind Microbiol Biotechnol 43:343–370. https://doi.org/10.1007/s10295-015-1682-x

    Article  CAS  PubMed  Google Scholar 

  4. Brown A, Fernández IS, Gordiyenko Y, Ramakrishnan V (2016) Ribosome-dependent activation of stringent control. Nature 534:277–280. https://doi.org/10.1038/nature17675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chakraburtty R, Bibb M (1997) The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J Bacteriol 179:5854–5861. https://doi.org/10.1128/jb.179.18.5854-5861.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen Y, Yin M, Horsman GP, Shen B (2011) Improvement of the enediyne antitumor antibiotic C-1027 production by manipulating its biosynthetic pathway regulation in Streptomyces globisporus. J Nat Prod 74:420–424. https://doi.org/10.1021/np100825y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Davies J, Wang H, Taylor T, Warabi K, Huang XH, Andersen RJ (2005) Uncialamycin, a new enediyne antibiotic. Org Lett 7:5233–5236. https://doi.org/10.1021/ol052081f

    Article  CAS  PubMed  Google Scholar 

  8. Döhner H, Weisdorf DJ, Bloomfield CD (2015) Acute, myeloid leukemia. N Engl J Med 373:1136–1152. https://doi.org/10.1056/NEJMra1406184

    Article  PubMed  Google Scholar 

  9. Doi-Katayama Y, Yoon YJ, Choi CY, Yu TW, Floss HG, Hutchinson CR (2000) Thioesterases and the premature termination of polyketide chain elongation in Rif B biosynthesis by Amycolatopsis mediterranei S699. J Antibiot 53:484–495. https://doi.org/10.7164/antibiotics.53.484

    Article  CAS  PubMed  Google Scholar 

  10. Floss HG, Yu TW (2005) Rifamycin-mode of action, resistance, and biosynthesis. Chem Rev 105:621–632. https://doi.org/10.1021/cr030112j

    Article  CAS  PubMed  Google Scholar 

  11. Heathcote ML, Staunton J, Leadlay PF (2001) Role of type II thioesterases: evidence for removal of short acyl chains produced by aberrant decarboxylation of chain extender units. Chem Biol 8:207–220. https://doi.org/10.1016/S1074-5521(01)00002-3

    Article  CAS  PubMed  Google Scholar 

  12. Hosaka T, Ohnishi-Kameyama M, Muramatsu H, Murakami K, Tsurumi Y, Kodani S, Yoshida M, Fujie A, Ochi K (2009) Antibacterial discovery in Actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol 27:462–464. https://doi.org/10.1038/nbt.1538

    Article  CAS  PubMed  Google Scholar 

  13. Kotowska M, Pawlik K (2014) Roles of type II thioesterases and their application for secondary metabolite yield improvement. Appl Microbiol Biotechnol 98:7735–7746. https://doi.org/10.1007/s00253-014-5952-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lai C, Xu J, Tozawa Y, Okamoto-Hosoya Y, Yao X, Ochi K (2002) Genetic and physiological characterization of rpoB mutations that activate antibiotic production in Streptomyces lividans. Microbiology 148:3365–3373. https://doi.org/10.1099/00221287-148-11-3365

    Article  CAS  PubMed  Google Scholar 

  15. Lam KS, Gustavson DR, Veitch JA, Forenza S (1993) The effect of cerulenin on the production of esperamicin A1 by Actinomadura verrucosospora. J Ind Microbiol 12:99–102. https://doi.org/10.1007/BF01569908

    Article  CAS  PubMed  Google Scholar 

  16. Lam KS, Veitch JA, Lowe SE, Forenza S (1995) Effect of neutral resins on the production of dynemicins by Micromonospora chersina. J Ind Microbiol 15:453–456. https://doi.org/10.1007/BF01569975

    Article  CAS  Google Scholar 

  17. Lam KS, Titus JA, Dabrah TT, Kimball DL, Veitch JM, Gustavson DR, Compton BJ, Matson JA, Forenza S, Ross J, Miller D, Roach J, Beutler J (1992) Improved processes for the production and isolation of dynemicin A and large-scale fermentation in a 10,000-liter fermentor. J Ind Microbiol 11:7–12. https://doi.org/10.1007/BF01583725

    Article  CAS  PubMed  Google Scholar 

  18. Lamb YN (2017) Inotuzumab ozogamicin: first global approval. Drugs. https://doi.org/10.1007/s40265-017-0802-5

    Google Scholar 

  19. Maeda H, Konno T (1997) Metamorphosis of neocarzinostatin to SMANCS: chemistry, biology, pharmacology, and clinical effect of the first prototype anticancer polymer therapeutic. In: Maeda H, Edo K, Ishida N (eds) Neocarzinostatin. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66914-2_12

  20. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661. https://doi.org/10.1021/acs.jnatprod.5b01055

    Article  CAS  PubMed  Google Scholar 

  21. Nicolaou KC, Wang Y, Lu M, Mandal D, Pattanayak MR, Yu R, Shah AA, Chen JS, Zhang H, Crawford JJ, Pasunoori L, Poudel YB, Chowdari NS, Pan C, Nazeer A, Gangwar S, Vite G, Pitsinos EN (2016) Streamlined total synthesis of uncialamycin and its application to the synthesis of designed analogues for biological investigations. J Am Chem Soc 138:8235–8246. https://doi.org/10.1021/jacs.6b04339

    Article  CAS  PubMed  Google Scholar 

  22. Nicolaou KC, Lu Z, Li R, Woods JR, Sohn TI (2015) Total synthesis of shishijimicin A. J Am Chem Soc 137:8716–8719. https://doi.org/10.1021/jacs.5b05575

    Article  CAS  PubMed  Google Scholar 

  23. Nicolaou KC, Dai WM (1991) Chemistry and biology of the enediyne anticancer antibiotics. Angew Chem Int Ed Engl 30:1387–1530. https://doi.org/10.1002/anie.199113873

    Article  Google Scholar 

  24. Nielsen J, Keasling JD (2016) Engineering cellular metabolism. Cell 164:1185–1197. https://doi.org/10.1016/j.cell.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  25. Ochi K (2016) Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot 70:25–40. https://doi.org/10.1038/ja.2016.82

    Article  PubMed  Google Scholar 

  26. Ochi K (2007) From microbial differentiation to ribosome engineering. Biosci Biotechnol Biochem 71:1373–1386. https://doi.org/10.1271/bbb.70007

    Article  CAS  PubMed  Google Scholar 

  27. Olano C, Lombó F, Méndez C, Salas JA (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10:281–292. https://doi.org/10.1016/j.ymben.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  28. Phillips T, Chase M, Wagner S, Renzi C, Powell M, DeAngelo J, Michels P (2013) Use of in situ solid-phase adsorption in microbial natural product fermentation development. J Ind Microbiol Biotechnol 40:411–425. https://doi.org/10.1007/s10295-013-1247-9

    Article  CAS  PubMed  Google Scholar 

  29. Ross W, Vrentas CE, Sanchez-Vazquez P, Gaal T, Gourse RL (2013) The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Mol Cell 50:420–429. https://doi.org/10.1016/j.molcel.2013.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Santos CN, Stephanopoulos G (2008) Combinatorial engineering of microbes for optimizing cellular phenotype. Curr Opin Chem Biol 12:168–176. https://doi.org/10.1016/j.cbpa.2008.01.017

    Article  CAS  PubMed  Google Scholar 

  31. Schlenk RF, Müller-Tidow C, Benner A, Kieser M (2017) Relapsed/refractory acute myeloid leukemia: any progress? Curr Opin Oncol 29:467–473. https://doi.org/10.1097/CCO.0000000000000404

    Article  PubMed  Google Scholar 

  32. Shao RG, Zhen YS (2008) Enediyne anticancer antibiotic lidamycin: chemistry, biology and pharmacology. Anticancer Agents Med Chem 8:123–131. https://doi.org/10.2174/187152008783497055

    Article  CAS  PubMed  Google Scholar 

  33. Shen B (2015) A new golden age of natural products drug discovery. Cell 163:1297–1300. https://doi.org/10.1016/j.cell.2015.11.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shen B, Hindra Yan X, Huang T, Ge H, Yang D, Teng Q, Rudolf JD, Lohman JR (2015) Enediynes: exploration of microbial genomics to discover new anticancer drug leads. Bioorg Med Chem Lett 25:9–15. https://doi.org/10.1016/j.bmcl.2014.11.019

    Article  CAS  PubMed  Google Scholar 

  35. Shen B, Liu W, Nonaka K (2003) Enediyne natural products: biosynthesis and prospect towards engineering novel antitumor agents. Curr Med Chem 10:2317–2325. https://doi.org/10.2174/0929867033456701

    Article  CAS  PubMed  Google Scholar 

  36. Sievers EL, Senter PD (2013) Antibody-drug conjugates in cancer therapy. Annu Rev Med 64:15–29. https://doi.org/10.1146/annurev-med-050311-201823

    Article  CAS  PubMed  Google Scholar 

  37. Smith AL, Nicolaou KC (1996) The enediyne antibiotics. J Med Chem 39:2103–2117. https://doi.org/10.1021/jm9600398

    Article  CAS  PubMed  Google Scholar 

  38. Talà A, Wang G, Zemanova M, Okamoto S, Ochi K, Alifano P (2009) Activation of dormant bacterial genes by Nonomuraea sp. strain ATCC 39727 mutant-type RNA polymerase. J Bacteriol 191:805–814. https://doi.org/10.1128/JB.01311-08

    Article  PubMed  Google Scholar 

  39. Tanaka Y, Kasahara K, Hirose Y, Murakami K, Kugimiya R, Ochi K (2013) Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in Actinomycetes. J Bacteriol 195:2959–2970. https://doi.org/10.1128/JB.00147-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang G, Hosaka T, Ochi K (2008) Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol 74:2834–2840. https://doi.org/10.1128/AEM.02800-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, Lee SY (2015) Metabolic engineering of antibiotic factories: new tools for antibiotic production in Actinomycetes. Trends Biotechnol 33:15–26. https://doi.org/10.1016/j.tibtech.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  42. Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175. https://doi.org/10.1038/nprot.2007.521

    Article  CAS  PubMed  Google Scholar 

  43. Xu J, Tozawa Y, Lai C, Hayashi H, Ochi K (2002) A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3(2). Mol Genet Genomics 268:179–189. https://doi.org/10.1007/s00438-002-0730-1

    Article  CAS  PubMed  Google Scholar 

  44. Yan X, Ge H, Huang T, Hindra Yang D, Teng Q, Crnovčić I, Li X, Rudolf JD, Lohman JR, Gansemans Y, Zhu X, Huang Y, Zhao LX, Jiang Y, Van Nieuwerburgh F, Rader C, Duan Y, Shen B (2016) Strain prioritization and genome mining for enediyne natural products. MBio 7:e02104–e02116. https://doi.org/10.1128/mBio.0210416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Y, Huang H, Xu S, Wang B, Ju J, Tan H, Li W (2015) Activation and enhancement of fredericamycin A production in deepsea-derived Streptomyces somaliensis SCSIO ZH66 by using ribosome engineering and response surface methodology. Microb Cell Fact 14:64. https://doi.org/10.1186/s12934-015-0244-2

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zuo Y, Wang Y, Steitz TA (2013) The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex. Mol Cell 50:430–436. https://doi.org/10.1016/j.molcel.2013.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in parts by NSFC Grants 81473124 (to Y.H.), 81530092 (to B.S.), the Chinese Ministry of Education 111 Project B0803420 (to Y.D.), NIH Grants GM115575 and CA204484 (to B.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanwen Duan or Yong Huang.

Ethics declarations

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

All authors declare that he/she has no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Pan, J., Wang, Z. et al. Ribosome engineering and fermentation optimization leads to overproduction of tiancimycin A, a new enediyne natural product from Streptomyces sp. CB03234. J Ind Microbiol Biotechnol 45, 141–151 (2018). https://doi.org/10.1007/s10295-018-2014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2014-8

Keywords

Navigation