Skip to main content
Log in

Refining and expanding nonribosomal peptide synthetase function and mechanism

  • Natural Products - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Nonribosomal peptide synthetases (NRPSs) are involved in the biosynthesis of numerous peptide and peptide-like natural products that have been exploited in medicine, agriculture, and biotechnology, among other fields. As a consequence, there have been considerable efforts aimed at understanding how NRPSs orchestrate the assembly of these natural products. This review highlights several recent examples that continue to expand upon the fundamental knowledge of NRPS mechanism and includes (1) the discovery of new NRPS substrates and the mechanism by which these sometimes structurally complex substrates are made, (2) the characterization of new NRPS activities and domains that function during the process of peptide assembly, and (3) the various catalytic strategies that are utilized to release the NRPS product. These findings continue to strengthen the predictive power for connecting genes to products, thereby facilitating natural product discovery and development in the Genomics Era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Al-Mestarihi AH, Villamizar G, Fernandez J, Zolova OE, Lombo F, Garneau-Tsodikova S (2014) Adenylation and S-methylation of cysteine by the bifunctional enzyme TioN in thiocoraline biosynthesis. J Am Chem Soc 136:17350–17354

    Article  CAS  PubMed  Google Scholar 

  2. Bachmann BO, Van Lanen SG, Baltz RH (2014) Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol 41:175–184

    Article  CAS  PubMed  Google Scholar 

  3. Balibar CJ, Howard-Jones AR, Walsh CT (2007) Terrequinone A biosynthesis through l-tryptophan oxidation, dimerization and bisprenylation. Nat Chem Biol 3:584–592

    Article  CAS  PubMed  Google Scholar 

  4. Balibar CJ, Walsh CT (2006) GliP, a multimodular nonribosomal peptide synthetase in Aspergillus fumigatus, makes the diketopiperazine scaffold of gliotoxin. Biochemistry 45:15029–15038

    Article  CAS  PubMed  Google Scholar 

  5. Belshaw PJ, Walsh CT, Stachelhaus T (1999) Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science 284:486–489

    Article  CAS  PubMed  Google Scholar 

  6. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  7. Bian X, Fu J, Plaza A, Herrmann J, Pistorius D, Stewart AF, Zhang Y, Muller R (2013) In vivo evidence for a prodrug activation mechanism during colibactin maturation. ChemBioChem 14:1194–1197

    Article  CAS  PubMed  Google Scholar 

  8. Bian X, Plaza A, Zhang Y, Muller R (2015) Two more pieces of the colibactin genotoxin puzzle from Escherichia coli show incorporation of an unusual 1-aminocyclopropanecarboxylic acid moiety. Chem Sci 6:3154–3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bischoff D, Bister B, Bertazzo M, Pfeifer V, Stegmann E, Nicholson GJ, Keller S, Pelzer S, Wohlleben W, Sussmuth RD (2005) The biosynthesis of vancomycin-type glycopeptide antibiotics—a model for oxidative side-chain cross-linking by oxygenases coupled to the action of peptide synthetases. ChemBioChem 6:267–272

    Article  CAS  PubMed  Google Scholar 

  10. Bischoff D, Pelzer S, Holtzel A, Nicholson GJ, Stockert S, Wohlleben W, Jung G, Sussmuth RD (2001) The biosynthesis of vancomycin-type glycopeptide antibiotics-new insights into the cyclization steps. Angew Chem Int Ed Engl 40:1693–1696

    Article  CAS  PubMed  Google Scholar 

  11. Bossuet-Greif N, Vignard J, Taieb F, Mirey G, Dubois D, Petit C, Oswald E, Nougayrede JP (2018) The colibactin genotoxin generates DNA interstrand cross-links in infected cells. MBio 9

  12. Broberg A, Menkis A, Vasiliauskas R (2006) Kutznerides 1-4, depsipeptides from the actinomycete Kutzneria sp. 744 inhabiting mycorrhizal roots of Picea abies seedlings. J Nat Prod 69:97–102

    Article  CAS  PubMed  Google Scholar 

  13. Brotherton CA, Balskus EP (2013) A prodrug resistance mechanism is involved in colibactin biosynthesis and cytotoxicity. J Am Chem Soc 135:3359–3362

    Article  CAS  PubMed  Google Scholar 

  14. Brotherton CA, Wilson M, Byrd G, Balskus EP (2015) Isolation of a metabolite from the pks island provides insights into colibactin biosynthesis and activity. Org Lett 17:1545–1548

    Article  CAS  PubMed  Google Scholar 

  15. Condurso HL, Bruner SD (2012) Structure and noncanonical chemistry of nonribosomal peptide biosynthetic machinery. Nat Prod Rep 29:1099–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bruner SD, Weber T, Kohli RM, Schwarzer D, Marahiel MA, Walsh CT, Stubbs MT (2002) Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE. Structure 10:301–310

    Article  CAS  PubMed  Google Scholar 

  17. Cao S, Yang Y, Ng NL, Guo Z (2005) Macrolactonization catalyzed by the terminal thioesterase domain of the nonribosomal peptide synthetase responsible for lichenysin biosynthesis. Bioorg Med Chem Lett 15:2595–2599

    Article  CAS  PubMed  Google Scholar 

  18. Challis GL (2008) Genome mining for novel natural product discovery. J Med Chem 51:2618–2628

    Article  CAS  PubMed  Google Scholar 

  19. Challis GL, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7:211–224

    Article  CAS  PubMed  Google Scholar 

  20. Clevenger KD, Ye R, Bok JW, Thomas PM, Islam MN, Miley GP, Robey MT, Chen C, Yang K, Swyers M, Wu E, Gao P, Wu CC, Keller NP, Kelleher NL (2018) Interrogation of benzomalvin biosynthesis using fungal artificial chromosomes with metabolomic scoring (FAC-MS): discovery of a benzodiazepine synthase activity. Biochemistry 57:3237–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clugston SL, Sieber SA, Marahiel MA, Walsh CT (2003) Chirality of peptide bond-forming condensation domains in nonribosomal peptide synthetases: the C5 domain of tyrocidine synthetase is a (D)C(L) catalyst. Biochemistry 42:12095–12104

    Article  CAS  PubMed  Google Scholar 

  22. Cougnoux A, Gibold L, Robin F, Dubois D, Pradel N, Darfeuille-Michaud A, Dalmasso G, Delmas J, Bonnet R (2012) Analysis of structure-function relationships in the colibactin-maturating enzyme ClbP. J Mol Biol 424:203–214

    Article  CAS  PubMed  Google Scholar 

  23. de Mattos-Shipley KMJ, Greco C, Heard DM, Hough G, Mulholland NP, Vincent JL, Micklefield J, Simpson TJ, Willis CL, Cox RJ, Bailey AM (2018) The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis. Chem Sci 9:4109–4117

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schwarzer D, Finking R, Marahiel MA (2003) Nonribosomal peptides: from genes to products. Nat Prod Rep 20:275–287

    Article  CAS  PubMed  Google Scholar 

  25. Drake EJ, Miller BR, Shi C, Tarrasch JT, Sundlov JA, Allen CL, Skiniotis G, Aldrich CC, Gulick AM (2016) Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Nature 529:235–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Drake EJ, Nicolai DA, Gulick AM (2006) Structure of the EntB multidomain nonribosomal peptide synthetase and functional analysis of its interaction with the EntE adenylation domain. Chem Biol 13:409–419

    Article  CAS  PubMed  Google Scholar 

  27. Du L, Chen M, Sanchez C, Shen B (2000) An oxidation domain in the BlmIII non-ribosomal peptide synthetase probably catalyzing thiazole formation in the biosynthesis of the anti-tumor drug bleomycin in Streptomyces verticillus ATCC15003. FEMS Microbiol Lett 189:171–175

    Article  CAS  PubMed  Google Scholar 

  28. Du L, Lou L (2010) PKS and NRPS release mechanisms. Nat Prod Rep 27:255–278. https://doi.org/10.1039/b912037h

    Article  CAS  PubMed  Google Scholar 

  29. Conti E, Stachelhaus T, Marahiel MA, Brick P (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16:4174–4183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu F, Zaleta-Rivera K, Zhu X, Huffman J, Millet JC, Harris SD, Yuen G, Li X-C, Du L (2007) Structure and biosynthesis of Heat-Stable Antifungal Factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrob Agents Chemother 51:64–72

    Article  CAS  PubMed  Google Scholar 

  31. Frueh DP, Arthanari H, Koglin A, Vosburg DA, Bennett AE, Walsh CT, Wagner G (2008) Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase. Nature 454:903–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fujimori DG, Hrvatin S, Neumann CS, Strieker M, Marahiel MA, Walsh CT (2007) Cloning and characterization of the biosynthetic gene cluster for kutznerides. Proc Natl Acad Sci USA 104:16498–16503

    Article  PubMed  Google Scholar 

  33. Funabashi M, Yang Z, Nonaka K, Hosobuchi M, Fujita Y, Shibata T, Chi X, Van Lanen SG (2010) An ATP-independent strategy for amide bond formation in antibiotic biosynthesis. Nat Chem Biol 6:581–586

    Article  CAS  PubMed  Google Scholar 

  34. Gao X, Haynes SW, Ames BD, Wang P, Vien LP, Walsh CT, Tang Y (2012) Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain. Nat Chem Biol 8:823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Geib N, Woithe K, Zerbe K, Li DB, Robinson JA (2008) New insights into the first oxidative phenol coupling reaction during vancomycin biosynthesis. Bioorg Med Chem Lett 18:3081–3084

    Article  CAS  PubMed  Google Scholar 

  36. Grunewald J, Kopp F, Mahlert C, Linne U, Sieber SA, Marahiel MA (2005) Fluorescence resonance energy transfer as a probe of peptide cyclization catalyzed by nonribosomal thioesterase domains. Chem Biol 12:873–881

    Article  CAS  PubMed  Google Scholar 

  37. Grunewald J, Sieber SA, Marahiel MA (2004) Chemo- and regioselective peptide cyclization triggered by the N-terminal fatty acid chain length: the recombinant cyclase of the calcium-dependent antibiotic from Streptomyces coelicolor. Biochemistry 43:2915–2925

    Article  CAS  PubMed  Google Scholar 

  38. Gulick AM (2009) Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem Biol 4:811–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hadatsch B, Butz D, Schmiederer T, Steudle J, Wohlleben W, Sussmuth R, Stegmann E (2007) The biosynthesis of teicoplanin-type glycopeptide antibiotics: assignment of P450 mono-oxygenases to side chain cyclizations of glycopeptide A47934. Chem Biol 14:1078–1089

    Article  CAS  PubMed  Google Scholar 

  40. Hai Y, Tang Y (2018) Biosynthesis of long-chain N-acyl amide by a truncated polyketide synthase-nonribosomal peptide synthetase hybrid megasynthase in fungi. J Am Chem Soc 140:1271–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hasebe F, Matsuda K, Shiraishi T, Futamura Y, Nakano T, Tomita T, Ishigami K, Taka H, Mineki R, Fujimura T, Osada H, Kuzuyama T, Nishiyama M (2016) Amino-group carrier-protein-mediated secondary metabolite biosynthesis in Streptomyces. Nat Chem Biol 12:967–972

    Article  CAS  PubMed  Google Scholar 

  42. Haslinger K, Peschke M, Brieke C, Maximowitsch E, Cryle MJ (2015) X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis. Nature 521:105–109

    Article  CAS  PubMed  Google Scholar 

  43. Homburg S, Oswald E, Hacker J, Dobrindt U (2007) Expression analysis of the colibactin gene cluster coding for a novel polyketide in Escherichia coli. FEMS Microbiol Lett 275:255–262

    Article  CAS  PubMed  Google Scholar 

  44. Hur GH, Meier JL, Baskin J, Codelli JA, Bertozzi CR, Marahiel MA, Burkart MD (2009) Crosslinking studies of protein-protein interactions in nonribosomal peptide biosynthesis. Chem Biol 16:372–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Keating TA, Ehmann DE, Kohli RM, Marshall CG, Trauger JW, Walsh CT (2001) Chain termination steps in nonribosomal peptide synthetase assembly lines: directed acyl-S-enzyme breakdown in antibiotic and siderophore biosynthesis. ChemBioChem 2:99–107

    Article  CAS  PubMed  Google Scholar 

  46. Matsuda K, Hasebe F, Shiwa Y, Kanesaki Y, Tomita T, Yoshikawa H, Shin-ya K, Kuzuyama T, Nishiyama M (2017) Genome mining of amino group carrier protein-mediated machinery: discovery and biosynthetic characterization of a natural product with unique hydrazone unit. ACS Chem Bio 12:124–131

    Article  CAS  Google Scholar 

  47. Kessler N, Schuhmann H, Morneweg S, Linne U, Marahiel MA (2004) The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. J Biol Chem 279:7413–7419

    Article  CAS  PubMed  Google Scholar 

  48. Kim WE, Patel A, Hur GH, Tufar P, Wuo MG, McCammon JA, Burkart MD (2018) Mechanistic probes for the epimerization domain of nonribosomal peptide synthetases. Chembiochem. https://doi.org/10.1002/cbic.201800439

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kleinkauf H, Gevers W (1969) Nonribosomal polypeptide synthesis: the biosynthesis of a cyclic peptide antibiotic, gramicidin S. Cold Spring Harb Symp Quant Biol 34:805–813

    Article  CAS  PubMed  Google Scholar 

  50. Kleinkauf H, von Dohren H (1990) Nonribosomal biosynthesis of peptide antibiotics. Eur J Biochem 192:1–15

    Article  CAS  PubMed  Google Scholar 

  51. Konno S, Ishikawa F, Suzuki T, Dohmae N, Burkart MD, Kakeya H (2015) Active site-directed proteomic probes for adenylation domains in nonribosomal peptide synthetases. Chem Commun (Camb) 51:2262–2265

    Article  CAS  Google Scholar 

  52. Kudo F, Miyanaga A, Eguchi T (2019) Structural basis of the nonribosomal codes for nonproteinogenic amino acid selective adenylation enzymes in the biosynthesis of natural products. J Ind Microbiol Biotechnol (in press)

  53. Kuse M, Franz T, Koga K, Suwan S, Isobe M, Agata N, Ohta M (2000) High incorporation of l-amino acids to cereulide, an emetic toxin from Bacillus cereus. Bioorg Med Chem Lett 10:735–739

    Article  CAS  PubMed  Google Scholar 

  54. Lambalot RH, Walsh CT (1995) Cloning, overproduction, and characterization of the Escherichia coli holo-acyl carrier protein synthase. J Biol Chem 270:24658–24661

    Article  CAS  PubMed  Google Scholar 

  55. Li X, Zhu J, Shi G, Sun M, Guo Z, Wang H, Lu C, Shen Y (2016) Deletion of the side chain assembly reveals diverse post-PKS modifications in the biosynthesis of ansatrienins. RSC Advances 6:88571–88579

    Article  CAS  Google Scholar 

  56. Li ZR, Li J, Gu JP, Lai JY, Duggan BM, Zhang WP, Li ZL, Li YX, Tong RB, Xu Y, Lin DH, Moore BS, Qian PY (2016) Divergent biosynthesis yields a cytotoxic aminomalonate-containing precolibactin. Nat Chem Biol 12:773–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li ZR, Li Y, Lai JY, Tang J, Wang B, Lu L, Zhu G, Wu X, Xu Y, Qian PY (2015) Critical intermediates reveal new biosynthetic events in the enigmatic colibactin pathway. ChemBioChem 16:1715–1719

    Article  CAS  PubMed  Google Scholar 

  58. Lin S, Van Lanen SG, Shen B (2009) A free-standing condensation enzyme catalyzing ester bond formation in C-1027 biosynthesis. Proc Natl Acad Sci USA 106:4183–4188

    Article  PubMed  Google Scholar 

  59. Liu J, Wang B, Li H, Xie Y, Li Q, Qin X, Zhang X, Ju J (2015) Biosynthesis of the anti-infective marformycins featuring pre-NRPS assembly line N-formylation and O-methylation and post-assembly line C-hydroxylation chemistries. Org Lett 17:1509–1512

    Article  CAS  PubMed  Google Scholar 

  60. Liu X, Jin Y, Cui Z, Nonaka K, Baba S, Funabashi M, Yang Z, Van Lanen SG (2016) The role of a nonribosomal peptide synthetase in l-lysine lactamization during capuramycin biosynthesis. ChemBioChem 17:804–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu Y, Li M, Mu H, Song S, Zhang Y, Chen K, He X, Wang H, Dai Y, Lu F, Yan Z, Zhang H (2017) Identification and characterization of the ficellomycin biosynthesis gene cluster from Streptomyces ficellus. Appl Microbiol Biotechnol 101:7589–7602

    Article  CAS  PubMed  Google Scholar 

  62. Lombo F, Velasco A, Castro A, de la Calle F, Brana AF, Sanchez-Puelles JM, Mendez C, Salas JA (2006) Deciphering the biosynthesis pathway of the antitumor thiocoraline from a marine actinomycete and its expression in two Streptomyces species. ChemBioChem 7:366–376

    Article  CAS  PubMed  Google Scholar 

  63. Lou L, Chen H, Cerny RL, Li Y, Shen Y, Du L (2012) Unusual activities of the thioesterase domain for the biosynthesis of the polycyclic tetramate macrolactam HSAF in Lysobacter enzymogenes C3. Biochemistry 51:4–6

    Article  CAS  PubMed  Google Scholar 

  64. Lou L, Qian G, Xie Y, Hang J, Chen H, Zaleta-Rivera K, Li Y, Shen Y, Dussault PH, Liu F, Du L (2011) Biosynthesis of HSAF, a tetramic acid-containing macrolactam from Lysobacter enzymogenes. J Am Chem Soc 133:643–645

    Article  CAS  PubMed  Google Scholar 

  65. Lundy TA, Mori S, Garneau-Tsodikova S (2018) Engineering bifunctional enzymes capable of adenylating and selectively methylating the side chain or core of amino acids. ACS Synth Biol 7:399–404

    Article  CAS  PubMed  Google Scholar 

  66. Luo L, Kohli RM, Onishi M, Linne U, Marahiel MA, Walsh CT (2002) Timing of epimerization and condensation reactions in nonribosomal peptide assembly lines: kinetic analysis of phenylalanine activating elongation modules of tyrocidine synthetase B. Biochemistry 41:9184–9196

    Article  CAS  PubMed  Google Scholar 

  67. Magarvey NA, Ehling-Schulz M, Walsh CT (2006) Characterization of the cereulide NRPS alpha-hydroxy acid specifying modules: activation of alpha-keto acids and chiral reduction on the assembly line. J Am Chem Soc 128:10698–10699

    Article  CAS  PubMed  Google Scholar 

  68. Marahiel MA (1992) Multidomain enzymes involved in peptide synthesis. FEBS Lett 307:40–43

    Article  CAS  PubMed  Google Scholar 

  69. Marahiel MA (1997) Protein templates for the biosynthesis of peptide antibiotics. Chem Biol 4:561–567

    Article  CAS  PubMed  Google Scholar 

  70. Marahiel MA, Krause M, Skarpeid HJ (1985) Cloning of the tyrocidine synthetase 1 gene from Bacillus brevis and its expression in Escherichia coli. Mol Gen Genet 201:231–236

    Article  CAS  PubMed  Google Scholar 

  71. Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2674

    Article  CAS  PubMed  Google Scholar 

  72. Mori S, Garzan A, Tsodikov OV, Garneau-Tsodikova S (2017) Deciphering nature’s intricate way of N, S-dimethylating l-cysteine: sequential action of two bifunctional adenylation domains. Biochemistry 56:6087–6097

    Article  CAS  PubMed  Google Scholar 

  73. Mori S, Pang AH, Lundy TA, Garzan A, Tsodikov OV, Garneau-Tsodikova S (2018) Structural basis for backbone N-methylation by an interrupted adenylation domain. Nat Chem Biol 14:428–430

    Article  CAS  PubMed  Google Scholar 

  74. Muramatsu Y, Miyakoshi S, Ogawa Y, Ohnuki T, Ishii MM, Arai M, Takatsu T, Inukai M (2003) Studies on novel bacterial translocase I inhibitors, A-500359 s. III. Deaminocaprolactam derivatives of capuramycin: A-500359 E, F, H; M-1 and M-2. J Antibiot (Tokyo) 56:259–267

    Article  CAS  Google Scholar 

  75. Nougayrede JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, Buchrieser C, Hacker J, Dobrindt U, Oswald E (2006) Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:848–851

    Article  CAS  PubMed  Google Scholar 

  76. Oliver RA, Li R, Townsend CA (2018) Monobactam formation in sulfazecin by a nonribosomal peptide synthetase thioesterase. Nat Chem Biol 14:5–7

    Article  CAS  PubMed  Google Scholar 

  77. Parkinson EI, Tryon JH, Goering AW, Ju KS, McClure RA, Kemball JD, Zhukovsky S, Labeda DP, Thomson RJ, Kelleher NL, Metcalf WW (2018) Discovery of the tyrobetaine natural products and their biosynthetic gene cluster via metabologenomics. ACS Chem Biol 13:1029–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Payne JA, Schoppet M, Hansen MH, Cryle MJ (2016) Diversity of nature’s assembly lines—recent discoveries in non-ribosomal peptide synthesis. Mol BioSyst 13:9–22

    Article  PubMed  Google Scholar 

  79. Pohanka A, Menkis A, Levenfors J, Broberg A (2006) Low-abundance kutznerides from Kutzneria sp. 744. J Nat Prod 69:1776–1781

    Article  CAS  PubMed  Google Scholar 

  80. Rausch C, Hoof I, Weber T, Wohlleben W, Huson DH (2007) Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol Biol 7:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rausch C, Weber T, Kohlbacher O, Wohlleben W, Huson DH (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33:5799–5808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Read JA, Walsh CT (2007) The lyngbyatoxin biosynthetic assembly line: chain release by four-electron reduction of a dipeptidyl thioester to the corresponding alcohol. J Am Chem Soc 129:15762–15763

    Article  CAS  PubMed  Google Scholar 

  83. Reimer JM, Aloise MN, Harrison PM, Schmeing TM (2016) Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature 529:239–242

    Article  CAS  PubMed  Google Scholar 

  84. Reimer JM, Harb I, Ovchinnikova OG, Jiang J, Whitfield C, Schmeing TM (2018) Structural insight into a novel formyltransferase and evolution to a nonribosomal peptide synthetase tailoring domain. ACS Chem Biol 13:3161–3172

    Article  CAS  PubMed  Google Scholar 

  85. Romero F, Espliego F, Perez Baz J, Garcia de Quesada T, Gravalos D, de la Calle F, Fernandez-Puentes JL (1997) Thiocoraline, a new depsipeptide with antitumor activity produced by a marine Micromonospora. I. Taxonomy, fermentation, isolation, and biological activities. J Antibiot (Tokyo) 50:734–737

    Article  CAS  Google Scholar 

  86. Roongsawang N, Lim SP, Washio K, Takano K, Kanaya S, Morikawa M (2005) Phylogenetic analysis of condensation domains in the nonribosomal peptide synthetases. FEMS Microbiol Lett 252:143–151

    Article  CAS  PubMed  Google Scholar 

  87. Rottig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O (2011) NRPSpredictor2–a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39:W362–W3673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schaffer JE, Reck MR, Prasad NK, Wencewicz TA (2017) Beta-lactone formation during product release from a nonribosomal peptide synthetase. Nat Chem Biol 13:737–744

    Article  CAS  PubMed  Google Scholar 

  89. Schneider TL, Shen B, Walsh CT (2003) Oxidase domains in epothilone and bleomycin biosynthesis: thiazoline to thiazole oxidation during chain elongation. Biochemistry 42:9722–9730

    Article  CAS  PubMed  Google Scholar 

  90. Schoenafinger G, Schracke N, Linne U, Marahiel MA (2006) Formylation domain: an essential modifying enzyme for the nonribosomal biosynthesis of linear gramicidin. J Am Chem Soc 128:7406–7407

    Article  CAS  PubMed  Google Scholar 

  91. Schracke N, Linne U, Mahlert C, Marahiel MA (2005) Synthesis of linear gramicidin requires the cooperation of two independent reductases. Biochemistry 44:8507–8513

    Article  CAS  PubMed  Google Scholar 

  92. Shaw-Reid CA, Kelleher NL, Losey HC, Gehring AM, Berg C, Walsh CT (1999) Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization. Chem Biol 6:385–400

    Article  CAS  PubMed  Google Scholar 

  93. Shi G, Shi N, Li Y, Chen W, Deng J, Liu C, Zhu J, Wang H, Shen Y (2016) D-alanylation in the assembly of ansatrienin side chain is catalyzed by a modular NRPS. ACS Chem Biol 11:876–881

    Article  CAS  PubMed  Google Scholar 

  94. Sieber SA, Tao J, Walsh CT, Marahiel MA (2004) Peptidyl thiophenols as substrates for nonribosomal peptide cyclases. Angew Chem Int Ed Engl 43:493–498

    Article  CAS  PubMed  Google Scholar 

  95. Sims JW, Schmidt EW (2008) Thioesterase-like role for fungal PKS-NRPS hybrid reductive domains. J Am Chem Soc 130:11149–11155

    Article  CAS  PubMed  Google Scholar 

  96. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505

    Article  CAS  PubMed  Google Scholar 

  97. Stachelhaus T, Walsh CT (2000) Mutational analysis of the epimerization domain in the initiation module PheATE of gramicidin S synthetase. Biochemistry 39:5775–5787

    Article  CAS  PubMed  Google Scholar 

  98. Stegmann E, Frasch HJ, Wohlleben W (2010) Glycopeptide biosynthesis in the context of basic cellular functions. Curr Opin Microbiol 13:595–602

    Article  CAS  PubMed  Google Scholar 

  99. Stegmann E, Pelzer S, Bischoff D, Puk O, Stockert S, Butz D, Zerbe K, Robinson J, Sussmuth RD, Wohlleben W (2006) Genetic analysis of the balhimycin (vancomycin-type) oxygenase genes. J Biotechnol 124:640–653

    Article  CAS  PubMed  Google Scholar 

  100. Sugita M, Natori Y, Sasaki T, Furihata K, Shimazu A, Seto H, Otake N (1982) Studies on mycotrienin antibiotics, a novel class of ansamycins. I. Taxonomy, fermentation, isolation and properties of mycotrienins I and II. J Antibiot (Tokyo) 35:1460–1466

    Article  CAS  Google Scholar 

  101. Sugita M, Sasaki T, Furihata K, Seto H, Otake N (1982) Studies on mycotrienin antibiotics, a novel class of ansamycins. II. Structure elucidation and biosynthesis of mycotrienins I and II. J Antibiot (Tokyo) 35:1467–1473

    Article  CAS  Google Scholar 

  102. Süssmuth RD, Pelzer S, Nicholson G, Walk T, Wohlleben W, Jung G (1999) New advances in the biosynthesis of glycopeptide antibiotics of the vancomycin type from Amycolatopsis mediterranei. Angewandte Chemie International Edition 38:1976–1979

    Article  Google Scholar 

  103. Tanovic A, Samel SA, Essen LO, Marahiel MA (2008) Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 321:659–663

    Article  CAS  PubMed  Google Scholar 

  104. Trauger JW, Kohli RM, Mootz HD, Marahiel MA, Walsh CT (2000) Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407:215–218

    Article  CAS  PubMed  Google Scholar 

  105. Trautman EP, Healy AR, Shine EE, Herzon SB, Crawford JM (2017) Domain-targeted metabolomics delineates the heterocycle assembly steps of colibactin biosynthesis. J Am Chem Soc 139:4195–4201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Van Lanen SG (2017) Biosynthesis: sAM cycles up for colibactin. Nat Chem Biol 13:1059–1061

    Article  CAS  PubMed  Google Scholar 

  107. Vizcaino MI, Crawford JM (2015) The colibactin warhead crosslinks DNA. Nat Chem 7:411–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vizcaino MI, Engel P, Trautman E, Crawford JM (2014) Comparative metabolomics and structural characterizations illuminate colibactin pathway-dependent small molecules. J Am Chem Soc 136:9244–9247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wackler B, Schneider P, Jacobs JM, Pauly J, Allen C, Nett M, Hoffmeister D (2011) Ralfuranone biosynthesis in Ralstonia solanacearum suggests functional divergence in the quinone synthetase family of enzymes. Chem Biol 18:354–360

    Article  CAS  PubMed  Google Scholar 

  110. Walsh CT (2017) Are highly morphed peptide frameworks lurking silently in microbial genomes valuable as next generation antibiotic scaffolds? Nat Prod Rep 34:687–693

    Article  CAS  PubMed  Google Scholar 

  111. Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496

    Article  CAS  PubMed  Google Scholar 

  112. Weissman KJ (2015) The structural biology of biosynthetic megaenzymes. Nat Chem Biol 11:660–672

    Article  CAS  PubMed  Google Scholar 

  113. Weissman KJ, Muller R (2008) Crystal structure of a molecular assembly line. Angew Chem Int Ed Engl 47:8344–8346

    Article  CAS  PubMed  Google Scholar 

  114. Witkop B, Sarges R, Gramicidin A (1965) Gramicidin A. VI. The synthesis of valine-and isoleucine-gramicidin A. J Am Chem Soc 87:2020–2027

    Article  PubMed  Google Scholar 

  115. Wu TS, Duncan J, Tsao SW, Chang CJ, Keller PJ, Floss HG (1987) Biosynthesis of the ansamycin antibiotic ansatrienin (mycotrienin) by Streptomyces collinus. J Nat Prod 50:108–118

    Article  CAS  PubMed  Google Scholar 

  116. Wyche TP, Hou Y, Braun D, Cohen HC, Xiong MP, Bugni TS (2011) First natural analogs of the cytotoxic thiodepsipeptide thiocoraline A from a marine Verrucosispora sp. J Org Chem 76:6542–6547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xue M, Shine E, Wang W, Crawford JM, Herzon SB (2018) Characterization of natural colibactin-nucleobase adducts by tandem mass spectrometry and isotopic labeling. Support for DNA alkylation by cyclopropane ring opening. Biochemistry 57:6391–6394

    Article  CAS  PubMed  Google Scholar 

  118. Yim G, Thaker MN, Koteva K, Wright G (2014) Glycopeptide antibiotic biosynthesis. J Antibiot (Tokyo) 67:31–41

    Article  CAS  Google Scholar 

  119. Zaleta-Rivera K, Xu C, Yu F, Butchko RA, Proctor RH, Hidalgo-Lara ME, Raza A, Dussault PH, Du L (2006) A bidomain nonribosomal peptide synthetase encoded by FUM14 catalyzes the formation of tricarballylic esters in the biosynthesis of fumonisins. Biochemistry 45:2561–2569

    Article  CAS  PubMed  Google Scholar 

  120. Zerbe K, Woithe K, Li DB, Vitali F, Bigler L, Robinson JA (2004) An oxidative phenol coupling reaction catalyzed by oxyB, a cytochrome P450 from the vancomycin-producing microorganism. Angew Chem Int Ed Engl 43:6709–6713

    Article  CAS  PubMed  Google Scholar 

  121. Zha L, Jiang Y, Henke MT, Wilson MR, Wang JX, Kelleher NL, Balskus EP (2017) Colibactin assembly line enzymes use S-adenosylmethionine to build a cyclopropane ring. Nat Chem Biol 13:1063–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang J, Liu N, Cacho RA, Gong Z, Liu Z, Qin W, Tang C, Tang Y, Zhou J (2016) Structural basis of nonribosomal peptide macrocyclization in fungi. Nat Chem Biol 12:1001–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhao Q, He Q, Ding W, Tang M, Kang Q, Yu Y, Deng W, Zhang Q, Fang J, Tang G, Liu W (2008) Characterization of the azinomycin B biosynthetic gene cluster revealing a different iterative type I polyketide synthase for naphthoate biosynthesis. Chem Biol 15:693–705

    Article  CAS  PubMed  Google Scholar 

  124. Zhou X, Huang H, Li J, Song Y, Jiang R, Liu J, Zhang S, Hua Y, Ju J (2014) New anti-infective cycloheptadepsipeptide congeners and absolute stereochemistry from the deep sea-derived Streptomyces drozdowiczii SCSIO 10141. Tetrahedron 70:7795–7801

    Article  CAS  Google Scholar 

  125. Zhu J, Chen W, Li YY, Deng JJ, Zhu DY, Duan J, Liu Y, Shi GY, Xie C, Wang HX, Shen YM (2014) Identification and catalytic characterization of a nonribosomal peptide synthetase-like (NRPS-like) enzyme involved in the biosynthesis of echosides from Streptomyces sp. LZ35. Gene 546:352–358

    Article  CAS  PubMed  Google Scholar 

  126. Zolova OE, Garneau-Tsodikova S (2014) KtzJ-dependent serine activation and O-methylation by KtzH for kutznerides biosynthesis. J Antibiot (Tokyo) 67:59–64

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the in depth discussions with Dr. Sylvie Garneau-Tsodikova and Taylor Lundy (Department of Pharmaceutical Sciences, University of Kentucky). Natural product-inspired research in the Van Lanen laboratory is supported in part by National Institutes of Health Grants AI128862, AI087849, and CA217255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Van Lanen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Special Issue “Natural Product Discovery and Development in the Genomic Era 2019”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McErlean, M., Overbay, J. & Van Lanen, S. Refining and expanding nonribosomal peptide synthetase function and mechanism. J Ind Microbiol Biotechnol 46, 493–513 (2019). https://doi.org/10.1007/s10295-018-02130-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-02130-w

Keywords

Navigation