Skip to main content

Advertisement

Log in

Autonomic function and brain volume

  • Review Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Objective

The aim of this study is to review the evidence on the role of the autonomic nervous system as a determinant of brain volume. Brain volume measures have gained increasing attention given its biological importance, particularly as a measurement of neurodegeneration.

Methods

Using an integrative approach, we reviewed publications addressing the anatomical and physiological characteristics of brain autonomic innervation focusing on evidence from diverse clinical populations with respect to brain volume.

Results

Multiple mechanisms contribute to changes in brain volume. Autonomic influence on cerebral blood volume is of significant interest.

Conclusion

We suggest a role for the autonomic innervation of brain vessels in fluctuations of cerebral blood volume. Further investigation in several clinical populations including multiple sclerosis is warranted to understand the specific role of parenchyma versus blood vessels changes on final brain volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reinstrup P, Ryding E, Ohlsson T, Dahm PL, Uski T (2001) Cerebral blood volume (CBV) in humans during normo and hypocapnia: influence of nitrous oxide (N(2)O). Anesthesiology 95:1079–1082

    Article  CAS  PubMed  Google Scholar 

  2. Phillips SJ, Whisnant JP (1992) Hypertension and the brain. The National High Blood Pressure Education Program. Arch Intern Med 152:938–945. doi:10.1001/archinte.1992.00400170028006

    Article  CAS  PubMed  Google Scholar 

  3. Talman WT, Nitschke Dragon D (2007) Neuronal nitric oxide mediates cerebral vasodilatation during acute hypertension. Brain Res 30:1126–1132. doi:10.1016/j.brainres.2007.01.008

    Google Scholar 

  4. Bleys RL, Cowen T (2001) Innervation of cerebral blood vessels: morphology, plasticity, age-related, and Alzheimer’s disease-related neurodegeneration. Microsc Res Tech 53:106–118. doi:10.1002/jemt.1075

    Article  CAS  PubMed  Google Scholar 

  5. Seifert T, Secher NH (2011) Sympathetic influence on cerebral blood flow and metabolism during exercise in humans. Prog Neurobiol 95:406–426. doi:10.1016/j.pneurobio.2011.09.008

    Article  CAS  PubMed  Google Scholar 

  6. Cipolla MJ (2009) Control of cerebral blood flow. Available from: http://www.ncbi.nlm.nih.gov/books/NBK53082

  7. Ogoh S, Brothers RM, Eubank WL, Raven PB (2008) Autonomic neural control of the cerebral vasculature: acute hypotension. Stroke J Cereb Circ 39:1979–1987. doi:10.1161/STROKEAHA.107.510008

    Article  Google Scholar 

  8. Krause DN, Edvinsson L (1984) Pharmacological characterization of cerebrovascular cholinergic receptors: combined biochemical and physiological approach. Monogr Neural Sci 11:51–57. doi:10.1159/000409188

    CAS  PubMed  Google Scholar 

  9. Di Marco LY, Venneri A, Farkas E, Evans PC, Marzo A, Frangi AF (2015) Vascular dysfunction in the pathogenesis of Alzheimer’s disease—a review of endothelium-mediated mechanisms and ensuing vicious circles. Neurobiol Dis 82:593–606. doi:10.1016/j.nbd.2015.08.014

    Article  CAS  PubMed  Google Scholar 

  10. Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8:136–142. doi:10.1038/nm0202-136

    Article  CAS  PubMed  Google Scholar 

  11. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360. doi:10.1038/nm0202-136

    Article  CAS  PubMed  Google Scholar 

  12. Filosa JA, Morrison HW, Iddings JA, Du W, Kim KJ (2015) Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience 26:96–109. doi:10.1016/j.neuroscience.2015.03.064

    Google Scholar 

  13. Kobayashi H, Frattola L, Ferrarese C, Spano P, Trabucchi M (1982) Characterization of beta-adrenergic receptors on human cerebral microvessels. Neurology 32:1384–1387. doi:10.1016/0006-8993(89)90645-8

    Article  CAS  PubMed  Google Scholar 

  14. Mitchell DA, Lambert G, Secher NH, Raven PB, van Lieshout J, Esler MD (2009) Jugular venous overflow of noradrenaline from the brain: a neurochemical indicator of cerebrovascular sympathetic nerve activity in humans. J Physiol 587:2589–2597. doi:10.1113/jphysiol.2008.167999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lambert GW, Kaye DM, Thompson JM, Turner AG, Cox HS, Vaz M et al (1998) Internal jugular venous spillover of noradrenaline and metabolites and their association with sympathetic nervous activity. Acta Physiol Scand 163:155–163. doi:10.1046/j.1365-201X.1998.00348.x

    Article  CAS  PubMed  Google Scholar 

  16. Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL (2000) MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke 31:1672–1678. doi:10.1161/01.STR.31.7.1672

    Article  CAS  PubMed  Google Scholar 

  17. Jordan J, Shannon JR, Diedrich A, Black B, Costa F, Robertson D et al (2000) Interaction of carbon dioxide and sympathetic nervous system activity in the regulation of cerebral perfusion in humans. Hypertension 36:383–388. doi:10.1161/01.HYP.36.3

    Article  CAS  PubMed  Google Scholar 

  18. Hossmann KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36:557–565. doi:10.1002/ana.410360404

    Article  CAS  PubMed  Google Scholar 

  19. McGaugh JL (2000) Memory—a century of consolidation. Science 287:248–251. doi:10.1126/science.287.5451.248

    Article  CAS  PubMed  Google Scholar 

  20. Chen Y, Hong X (2016) Effects of carvedilol reduce conjunctivitis through changes in inflammation, NGF and VEGF levels in a rat model. Exp Ther Med 11:1987–1992. doi:10.3892/etm.2016.3140

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Caramanos Z, Fonov VS, Francis SJ, Narayanan S, Pike GB, Collins DL et al (2010) Gradient distortions in MRI: characterizing and correcting for their effects on SIENA-generated measures of brain volume change. NeuroImage 49:1601–1611. doi:10.1016/j.neuroimage.2009.08.008

    Article  PubMed  Google Scholar 

  22. Nakamura K, Brown RA, Narayanan S, Collins DL, Arnold DL (2015) Diurnal fluctuations in brain volume: statistical analyses of MRI from large populations. NeuroImage 118:126–132. doi:10.1016/j.nicl.2014.08.014

    Article  PubMed  Google Scholar 

  23. Kim JB, Suh SI, Seo WK, Koh SB, Kim JH (2014) Right insular atrophy in neurocardiogenic syncope: a volumetric MRI study. AJNR 35:113–118. doi:10.3174/ajnr.A3611

    Article  CAS  PubMed  Google Scholar 

  24. Béchir M, Binggeli C, Corti R, Chenevard R, Spieker L, Ruschitzka F et al (2003) Dysfunctional baroreflex regulation of sympathetic nerve activity in patients with vasovagal syncope. Circulation 107:1620–1625. doi:10.1161/01.CIR.0000056105.87040.2B

    Article  PubMed  Google Scholar 

  25. Bondar RL, Kassam MS, Stein F, Dunphy PT, Fortney S, Riedesel ML (1995) Simultaneous cerebrovascular and cardiovascular responses during presyncope. Stroke J Cereb Circ 26:1794–1800. doi:10.1161/01

    Article  CAS  Google Scholar 

  26. Ilgin N, Olgunturk R, Kula S, Turan L, Tunaoğlu S, Temiz H et al (2005) Brain perfusion assessed by 99mTc-ECD SPECT imaging in pediatric patients with neurally mediated reflex syncope. Pacing Clin Electrophysiol 28:534–539. doi:10.1111/j.1540-8159.2005.09317.x

    Article  CAS  PubMed  Google Scholar 

  27. Joo EY, Hong SB, Lee M, Tae WS, Lee J, Han SW et al (2011) Cerebral blood flow abnormalities in patients with neurally mediated syncope. J Neurol 258:366–372. doi:10.1007/s00415-010-5759-1

    Article  PubMed  Google Scholar 

  28. Levine BD, Giller CA, Lane LD, Buckey JC, Blomqvist CG (1994) Cerebral versus systemic hemodynamics during graded orthostatic stress in humans. Circulation 90:298–306. doi:10.1161/01

    Article  CAS  PubMed  Google Scholar 

  29. Beauchet O, Celle S, Roche F, Bartha R, Montero-Odasso M, Allali G et al (2013) Blood pressure levels and brain volume reduction: a systematic review and meta-analysis. J Hypertens 31:1502–1516. doi:10.1097/HJH.0b013e32836184b5

    Article  CAS  PubMed  Google Scholar 

  30. Gianaros PJ, Greer PJ, Ryan CM, Jennings JR (2006) Higher blood pressure predicts lower regional grey matter volume: consequences on short-term information processing. NeuroImage 31:754–765. doi:10.1016/j.neuroimage.2006.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  31. Goldstein IB, Bartzokis G, Guthrie D, Shapiro D (2002) Ambulatory blood pressure and brain atrophy in the healthy elderly. Neurology 59:713–719. doi:10.1016/j.neuroimage.2006.01.003

    Article  PubMed  Google Scholar 

  32. Goldstein IB, Bartzokis G, Guthrie D, Shapiro D (2005) Ambulatory blood pressure and the brain: a 5-year follow-up. Neurology 64:1846–1852. doi:10.1212/01.WNL.0000164712.24389.BB

    Article  PubMed  Google Scholar 

  33. Taki Y, Goto R, Evans A, Zijdenbos A, Neelin P, Lerch J et al (2004) Voxel-based morphometry of human brain with age and cerebrovascular risk factors. Neurobiol Aging 25:455–463. doi:10.1016/j.neurobiolaging.2003.09.002

    Article  PubMed  Google Scholar 

  34. Mancia G, Grassi G (2014) The autonomic nervous system and hypertension. Circ Res 114:1804–1814. doi:10.1161/CIRCRESAHA.114.302524

    Article  CAS  PubMed  Google Scholar 

  35. Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL (1978) Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol 234:371–383

    Google Scholar 

  36. Izdebska E, Cybulska I, Izdebski J, Makowiecka-Ciesla M, Trzebski A (2004) Effects of moderate physical training. J Physiol Pharmacol 55:713–724. doi:10.1007/s00421-009-1025-6

    CAS  PubMed  Google Scholar 

  37. Sloan RP, Shapiro PA, DeMeersman RE, Bagiella E, Brondolo EN, McKinley PS et al (2009) The effect of aerobic training and cardiac autonomic regulation in young adults. Am J Public Health 99:921–928. doi:10.1073/pnas.0611721104

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9:58–65. doi:10.1038/nrn2298

    Article  CAS  PubMed  Google Scholar 

  39. Barkhof F, Calabresi PA, Miller DH, Reingold SC (2009) Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol 5:256–266. doi:10.1038/nrneurol.2009.41

    Article  PubMed  Google Scholar 

  40. Popescu V, Klaver R, Voorn P, Galis-de Graaf Y, Knol DL, Twisk J et al (2015) What drives MRI-measured cortical atrophy in multiple sclerosis? Mult Scler 21:1280–1290. doi:10.1177/1352458514562440

    Article  CAS  PubMed  Google Scholar 

  41. Hojjat S-P, Cantrell CG, Carroll TJ, Vitorino R, Feinstein A, Zhang L et al (2016) Perfusion reduction in the absence of structural differences in cognitively impaired versus unimpaired RRMS patients. Mult Scler. doi:10.1177/1352458516628656 (in press)

    Google Scholar 

  42. Inglese M, Park S-J, Johnson G, Babb JS, Miles L, Jaggi H et al (2007) Deep gray matter perfusion in multiple sclerosis: dynamic susceptibility contrast perfusion magnetic resonance imaging at 3 T. Arch Neurol 64:196–202. doi:10.1001/archneur.64.2.196

    Article  PubMed  Google Scholar 

  43. Law M, Saindane AM, Ge Y, Babb JS, Johnson G, Mannon LJ et al (2004) Microvascular abnormality in relapsing-remitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter. Radiology 231:645–652. doi:10.1148/radiol.2313030996

    Article  PubMed  Google Scholar 

  44. Racosta J, Sposato L, Morrow S, Cipriano L, Kimpiski K, Kremenchutzky M (2015) Cardiovascular autonomic dysfunction in multiple sclerosis: a meta-analysis. Mult Scler Relat Disord 4:104–111. doi:10.1016/j.msard.2015.02.002

    Article  PubMed  Google Scholar 

  45. Racosta JM, Kremenchutzky M (2014) The role of autonomic dysregulation from pathophysiology to therapeutics of multiple sclerosis: a putative novel treatment target? J Neurol Neurophysiol 5:212–214. doi:10.4172/2155-9562.1000212

    Article  Google Scholar 

  46. Racosta JM, Kimpinski K. Autonomic dysfunction, immune regulation and multiple sclerosis. Clin Auton Res 26:23–31. doi:10.1007/s10286-015-0325-7

  47. De Keyser J, Wilczak N, Leta R, Streetland C (1999) Astrocytes in multiple sclerosis lack beta-2 adrenergic receptors. Neurology 53(8):1628–1633

    Article  PubMed  Google Scholar 

  48. Duning T, Kloska S, Steinsträter O, Kugel H, Heindel W, Knecht S (2005) Dehydration confounds the assessment of brain atrophy. Neurology 64:548–550. doi:10.1212/01.WNL.0000150542.16969.CC

    Article  CAS  PubMed  Google Scholar 

  49. Nakamura K, Brown RA, Araujo D, Narayanan S, Arnold DL (2014) Correlation between brain volume change and T2 relaxation time induced by dehydration and rehydration: implications for monitoring atrophy in clinical studies. NeuroImageClinical 6:166–170. doi:10.1016/j.nicl.2014.08.014

    Google Scholar 

  50. Panza JA, Epstein SE, Quyyumi AA (1991) Circadian variation in vascular tone and its relation to alpha-sympathetic vasoconstrictor activity. N Engl J Med 325:986–990. doi:10.1056/NEJM199110033251402

    Article  CAS  PubMed  Google Scholar 

  51. Scheff JD, Mavroudis PD, Calvano SE, Lowry SF, Androulakis IP (2011) Modeling autonomic regulation of cardiac function and heart rate variability in human endotoxemia. Physiol Genomics 43:951–964. doi:10.1152/physiolgenomics.00040.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S (2015) Bö L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285. doi:10.1056/NEJM19980129338050253

    Article  Google Scholar 

  53. De Stefano N, Arnold DL (2015) Towards a better understanding of pseudoatrophy in the brain of multiple sclerosis patients. Mult Scler 21:675–686. doi:10.1177/1352458514564494

    Article  PubMed  Google Scholar 

  54. Rossi S, Rocchi C, Studer V, Motta C, Lauretti B, Germani G et al (2015) The autonomic balance predicts cardiac responses after the first dose of fingolimod. Mult Scler 21:206–216. doi:10.1177/1352458514538885

    Article  CAS  PubMed  Google Scholar 

  55. Simula S, Laitinen T, Laitinen TM, Tarkiainen T, Hartikainen P, Hartikainen JE (2015) Effect of fingolimod on cardiac autonomic regulation in patients with multiple sclerosis. Mult Scler. doi:10.1177/1352458515604384 (in press)

    PubMed  Google Scholar 

  56. Zaffaroni M, Marino F, Bombelli R, Rasini E, Monti M, Ferrari M et al (2008) Therapy with interferon-beta modulates endogenous catecholamines in lymphocytes of patients with multiple sclerosis. Exp Neurol 214:315–321. doi:10.1016/j.expneurol.2008.08.015

    Article  CAS  PubMed  Google Scholar 

  57. Sormani MP, Arnold DL, De Stefano N (2014) Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann Neurol 75:43–49. doi:10.1002/ana.24018

    Article  PubMed  Google Scholar 

  58. Paolillo A, Piattella MC, Pantano P, Di Legge S, Caramia F, Russo P et al (2004) The relationship between inflammation and atrophy in clinically isolated syndromes suggestive of multiple sclerosis: a monthly MRI study after triple-dose gadolinium-DTPA. J Neurol Apr 251:432–439. doi:10.1007/s00415-004-0349-8

  59. Filippi M, Rocca MA, Barkhof F, Bruck W, Chen JT, Comi G et al (2012) Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol 11:349–360. doi:10.1016/S1474-4422(12)70003-0

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Racosta.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Racosta, J.M., Kimpinski, K. Autonomic function and brain volume. Clin Auton Res 26, 377–383 (2016). https://doi.org/10.1007/s10286-016-0380-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-016-0380-8

Keywords

Navigation