Skip to main content

Advertisement

Log in

Mechanical properties of simulated dentin caries treated with metal cations and l-ascorbic acid 2-phosphate

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

This pH cycling study aimed to investigate the effects of l-Ascorbic acid 2-phosphate (AA2P) salts of Mg, Zn, Mn, Sr, and Ba on the surface microhardness, compressive strength, diametral tensile strength (DTS), and solubility of root canal dentin. 186 cylindrical dentin specimens from 93 teeth were fortified with optimal concentrations of AA2P salts of Mg (0.18 mM), Zn (5.3 µM), Mn (2.2 × 10–8 M), Sr (1.8 µM), and Ba (1.9 µM). Saline was used as the control group. These dentin specimens underwent a 3-day cycling process simulating dentin caries formation through repeated sequences of demineralization and remineralization. Surface microhardness at 100 and 500 µm depths (n = 10/subgroup), scanning electron microscopy (n = 3/group), compressive strength (n = 10/group), DTS (n = 6/group), and solubility (n = 5/group) tests were performed to analyze the dentin specimens. Data were analyzed using Kolmogorov–Smirnov, one-way ANOVA, and Post Hoc Tukey tests (p < 0.05). The control group had significantly lower microhardness at both depths (p < 0.001), reduced DTS (p = 0.001), decreased compressive strength (p < 0.001), and higher weight loss (p < 0.001) than all other groups. The Sr group had the highest compressive strength and microhardness among all the groups. The microhardness was significantly higher for the 500 µm depth than the 100 µm depth (p < 0.001), but the difference in microhardness between depths across groups was not significant (p = 0.211). All fortifying solutions provided some protection against artificial caries lesions. Therefore, these elements might have penetrated and reinforced the demineralized dentin against acid dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tjäderhane L, Carrilho MR, Breschi L, et al. Dentin basic structure and composition—an overview. Endod Topics. 2009;20(1):3–29.

    Article  Google Scholar 

  2. Goldberg M, Kulkarni AB, Young M, et al. Dentin: structure, composition and mineralization: the role of dentin ECM in dentin formation and mineralization. Front Biosci (Elite Ed). 2011;3:711.

    Article  PubMed  Google Scholar 

  3. Purk JH. 8 - Morphologic and structural analysis of material-tissue interfaces relevant to dental reconstruction. In: Spencer P, Misra A, editors. Material-tissue interfacial phenomena. Woodhead Publishing; 2017. p. 205–29.

    Chapter  Google Scholar 

  4. Lester K. Some preliminary observations in caries (“ remineralization”) crystals in enamel and dentine by surface electron microscopy. Virchows Arch Abt A Path Anat. 1968;344:196–212.

    Article  CAS  Google Scholar 

  5. Kassebaum N, Bernabé E, Dahiya M, Bhandari B, Murray C, Marcenes W. Global burden of untreated caries: a systematic review and metaregression. J Dent Res. 2015;94(5):650–8.

    Article  CAS  PubMed  Google Scholar 

  6. Nakajima M, Kunawarote S, Prasansuttiporn T, Tagami J. Bonding to caries-affected dentin. Japan Dent Sci Rev. 2011;47(2):102–14. https://doi.org/10.1016/j.jdsr.2011.03.002.

    Article  Google Scholar 

  7. Buzalaf MA, Hannas AR, Magalhães AC, Rios D, Honório HM, Delbem AC. pH-cycling models for in vitro evaluation of the efficacy of fluoridated dentifrices for caries control: strengths and limitations. J Appl Oral Sci. 2010;18(4):316–34. https://doi.org/10.1590/s1678-77572010000400002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bjørndal L, Laustsen MH, Reit C. Root canal treatment in Denmark is most often carried out in carious vital molar teeth and retreatments are rare. Int Endod J. 2006;39(10):785–90. https://doi.org/10.1111/j.1365-2591.2006.01149.x.

    Article  PubMed  Google Scholar 

  9. Spencer P, Wang Y, Katz JL, Misra A. Physicochemical interactions at the dentin/adhesive interface using FTIR chemical imaging. J Biomed Opt. 2005;10(3):031104–11.

    Article  PubMed  Google Scholar 

  10. Tjäderhane L, Hietala E-L, Larmas M. Mineral element analysis of carious and sound rat dentin by electron probe microanalyzer combined with back-scattered electron image. J Dent Res. 1995;74(11):1770–4.

    Article  PubMed  Google Scholar 

  11. Zheng L, Nakajima M, Higashi T, Foxton RM, Tagami J. Hardness and Young’s modulus of transparent dentin associated with aging and carious disease. Dent Mater J. 2005;24(4):648–53.

    Article  PubMed  Google Scholar 

  12. Yoshiyama M, Tay F, Doi J, Nishitani Y, Yamada T, Itou K, et al. Bonding of self-etch and total-etch adhesives to carious dentin. J Dent Res. 2002;81(8):556–60.

    Article  CAS  PubMed  Google Scholar 

  13. Zheng L, Hilton JF, Habelitz S, Marshall SJ, Marshall GW. Dentin caries activity status related to hardness and elasticity. Eur J Oral Sci. 2003;111(3):243–52.

    Article  PubMed  Google Scholar 

  14. Erhardt MCG, Toledano M, Osorio R, Pimenta LA. Histomorphologic characterization and bond strength evaluation of caries-affected dentin/resin interfaces: effects of long-term water exposure. Dent Mater. 2008;24(6):786–98.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Spencer P, Walker MP. Chemical profile of adhesive/caries-affected dentin interfaces using Raman microspectroscopy. J Biomed Mater Res Part A: Off J Soci Biomater, Japan Soc Biomater, Aust Soc Biomater Korean Soc Biomater. 2007;81(2):279–86.

    Article  Google Scholar 

  16. Perdigão J. Dentin bonding—variables related to the clinical situation and the substrate treatment. Dent Mater. 2010;26(2):e24–37. https://doi.org/10.1016/j.dental.2009.11.149.

    Article  CAS  PubMed  Google Scholar 

  17. Saghiri MA, Vakhnovetsky J, Vakhnovetsky A, et al. Functional role of inorganic trace elements in dentin apatite tissue—part 1: Mg, Sr, Zn, and Fe. J Trace Elem Med Biol. 2022;71:126932.

    Article  CAS  PubMed  Google Scholar 

  18. Saghiri MA, Vakhnovetsky J, Vakhnovetsky A. Functional role of inorganic trace elements in dentin apatite—part ii: copper, manganese, silicon, and lithium. J Trace Elem Med Biol. 2022. https://doi.org/10.1016/j.jtemb.2022.126995.

    Article  PubMed  Google Scholar 

  19. Saghiri MA, Vakhnovetsky J, Vakhnovetsky A, et al. Functional role of inorganic trace elements in dentin apatite tissue-part III: Se, F, Ag, and B. J Trace Elem Med Biol. 2022;72:126990. https://doi.org/10.1016/j.jtemb.2022.126990.

    Article  CAS  PubMed  Google Scholar 

  20. Zheng K, Song W, Sun A, Chen X, Liu J, Luo Q, et al. Enzymatic production of ascorbic acid-2-phosphate by recombinant acid phosphatase. J Agric Food Chem. 2017;65(20):4161–6. https://doi.org/10.1021/acs.jafc.7b00612.

    Article  CAS  PubMed  Google Scholar 

  21. Song W, Zheng K, Xu X, Gao C, Guo L, Liu J, et al. Enzymatic production of ascorbic acid-2-phosphate by engineered pseudomonas aeruginosa acid phosphatase. J Agric Food Chem. 2021;69(47):14215–21. https://doi.org/10.1021/acs.jafc.1c04685.

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, Ma Y, Chen M, Ji J, Zhu Y, Zhu Q, et al. Ba/Mg co-doped hydroxyapatite/PLGA composites enhance X-ray imaging and bone defect regeneration. J Mater Chem B. 2021;9(33):6691–702.

    Article  CAS  PubMed  Google Scholar 

  23. Zdanowicz JA, Featherstone JD, Espeland MA, Curzon ME. Inhibitory effect of barium on human caries prevalence. Commun Dent Oral Epidemiol. 1987;15(1):6–9.

    Article  CAS  Google Scholar 

  24. Ren F, Xin R, Ge X, Leng Y. Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater. 2009;5(8):3141–9.

    Article  CAS  PubMed  Google Scholar 

  25. Tang Y, Chappell HF, Dove MT, Reeder RJ, Lee YJ. Zinc incorporation into hydroxylapatite. Biomaterials. 2009;30(15):2864–72.

    Article  CAS  PubMed  Google Scholar 

  26. Jayasree R, Kumar T, Mahalaxmi S, Abburi S, Rubaiya Y, Doble M. Dentin remineralizing ability and enhanced antibacterial activity of strontium and hydroxyl ion co-releasing radiopaque hydroxyapatite cement. J Mater Sci - Mater Med. 2017;28(6):1–12.

    Article  CAS  Google Scholar 

  27. Jelaca-Tavakoli M, Gerlach RF, Djuric M. Manganese (Mn) in human teeth. FASEB J. 2016;30:778–83.

    Article  Google Scholar 

  28. Oliveira PH, Santana LAB, Ferreira NS, Sharifi-Asl S, Shokuhfar T, Shahbazian-Yassar R, et al. Manganese behavior in hydroxyapatite crystals revealed by X-ray difference Fourier maps. Ceram Int. 2020;46(8P):10585–97. https://doi.org/10.1016/j.ceramint.2020.01.062.

    Article  CAS  Google Scholar 

  29. Mayer I, Jacobsohn O, Niazov T, Werckmann J, Iliescu M, Richard-Plouet M, et al. Manganese in precipitated hydroxyapatites. Eur J Inorg Chem. 2003;2003(7):1445–51.

    Article  Google Scholar 

  30. Ghosh ANB, Kumar V, Nayan K. Role of minerals and trace elements in oral health - a review. J Oral Dent Health. 2016;2:1–2.

    CAS  Google Scholar 

  31. Pereira P, Inokoshi S, Yamada T, Tagami J. Microhardness of in vitro caries inhibition zone adjacent to conventional and resin-modified glass ionomer cements. Dent Mater. 1998;14(3):179–85.

    Article  CAS  PubMed  Google Scholar 

  32. Marquezan M, Corrêa FNP, Sanabe ME, Rodrigues Filho LE, Hebling J, Guedes-Pinto AC, et al. Artificial methods of dentine caries induction: a hardness and morphological comparative study. Arch Oral Biol. 2009;54(12):1111–7. https://doi.org/10.1016/j.archoralbio.2009.09.007.

    Article  PubMed  Google Scholar 

  33. Williams PD, Smith DC. Measurement of the tensile strength of dental restorative materials by use of a diametral compression test. J Dent Res. 1971;50(2):436–42. https://doi.org/10.1177/00220345710500025401.

    Article  CAS  PubMed  Google Scholar 

  34. Ban S, Anusavice K. Influence of test method on failure stress of brittle dental materials. J Dent Res. 1990;69(12):1791–9.

    Article  CAS  PubMed  Google Scholar 

  35. Davari A, Kazemi AD, Mousavinasab M, Yassaei S, Alavi A. Evaluation the compressive and diametric tensile strength of nano and hybrid composites. Dent Res J (Isfahan). 2012;9(6):827–8.

    PubMed  Google Scholar 

  36. Talal A, Hamid SK, Khan M, et al. Structure of biological apatite: bone and tooth. In: Khan AS, Chaudhry AA, editors., et al., Handbook of ionic substituted hydroxyapatites. Cambridge: Woodhead Publishing; 2020. p. 1–19.

    Google Scholar 

  37. Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev. 2008;108(11):4754–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tite T, Popa A-C, Balescu LM, Bogdan IM, Pasuk I, Ferreira JM, et al. Cationic substitutions in hydroxyapatite: current status of the derived biofunctional effects and their in vitro interrogation methods. Materials. 2018;11(11):2081.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  39. Kay MI, Young R, Posner A. Crystal structure of hydroxyapatite. Nature. 1964;204(4963):1050–2.

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Elliott J. Hydroxyapatite and nonstoichiometric apatites. Structure and chemistry of the apatites and other calcium orthophosphates. 1994;18:111-89

  41. Šupová M. Substituted hydroxyapatites for biomedical applications: a review. Ceram Int. 2015;41(8):9203–31.

    Article  Google Scholar 

  42. Ratnayake JTB, Mucalo M, Dias GJ. Substituted hydroxyapatites for bone regeneration: a review of current trends. J Biomed Mater Res B Appl Biomater. 2017;105(5):1285–99. https://doi.org/10.1002/jbm.b.33651.

    Article  CAS  PubMed  Google Scholar 

  43. Saghiri MA, Saghiri AM, Samadi E, et al. Neural network approach to evaluate the physical properties of dentin. Odontology. 2023;111(1):68–77. https://doi.org/10.1007/s10266-022-00726-4.

    Article  CAS  PubMed  Google Scholar 

  44. Saghiri MA, García-Godoy F, Asgar K, Lotfi M. The effect of Morinda Citrifolia juice as an endodontic irrigant on smear layer and microhardness of root canal dentin. Oral Sci Int. 2013;10(2):53–7. https://doi.org/10.1016/S1348-8643(12)00073-0.

    Article  Google Scholar 

  45. Saghiri MA, Freag P, Nath D, Morgano SM. The effect of diabetes on the tensile bond strength of a restorative dental composite to dentin. Odontology. 2022. https://doi.org/10.1007/s10266-022-00697-6.

    Article  PubMed  Google Scholar 

  46. Shimbo K, Nagato N, Taguch I. Resonac Holdings Corp, Process for purifying L-ascorbic acid 2-phosphate, US06/892,013. 1988.

  47. Saghiri MA, Delvarani A, Mehrvarzfar P, Malganji G, Lotfi M, Dadresanfar B, et al. A study of the relation between erosion and microhardness of root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2009;108(6):e29–34.

    Article  Google Scholar 

  48. Takeo Hara A, Silami de Magalhães C, Campos Serra M, Luiz RA. Cariostatic effect of fluoride-containing restorative systems associated with dentifrices on root dentin. J Dent. 2002;30(5):205–12. https://doi.org/10.1016/S0300-5712(02)00017-9.

    Article  CAS  Google Scholar 

  49. Saghiri MA, Vakhnovetsky J, Dadvand S, et al. Impact of deproteinization methods on the physical and mechanical properties of dentin. Mater. 2022;25:101551. https://doi.org/10.1016/j.mtla.2022.101551.

    Article  CAS  Google Scholar 

  50. Saghiri MA, Sheibani N, Kawai T, et al. Diabetes negatively affects tooth enamel and dentine microhardness: an in-vivo study. Arch Oral Biol. 2022. https://doi.org/10.1016/j.archoralbio.2022.105434.

    Article  PubMed  Google Scholar 

  51. Zaytsev D, Panfilov P. Deformation behavior of human dentin in liquid nitrogen: a diametral compression test. Mater Sci Eng, C. 2014;42:48–51. https://doi.org/10.1016/j.msec.2014.05.011.

    Article  CAS  Google Scholar 

  52. Zaytsev D, Panfilov P. Deformation behavior of human enamel and dentin–enamel junction under compression. Mater Sci Eng, C. 2014;34:15–21. https://doi.org/10.1016/j.msec.2013.10.009.

    Article  CAS  Google Scholar 

  53. Tadakamadla J, Kumar S, Ageeli A, Venkata Vani N, T MB. Enamel solubility potential of commercially available soft drinks and fruit juices in Saudi Arabia. Saudi J Dent Res. 2015;6(2):106–9. https://doi.org/10.1016/j.sjdr.2014.11.003.

    Article  Google Scholar 

  54. Rath PP, Yiu CKY, Matinlinna JP, Kishen A, Neelakantan P. The effect of root canal irrigants on dentin: a focused review. Restor Dent Endod. 2020. https://doi.org/10.5395/rde.2020.45.e39.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hülsmann M, Rödig T, Nordmeyer S. Complications during root canal irrigation. Endod Top. 2007;16(1):27–63.

    Article  Google Scholar 

  56. Elbahary S, Haj-yahya S, Khawalid M, Tsesis I, Rosen E, Habashi W, et al. Effects of different irrigation protocols on dentin surfaces as revealed through quantitative 3D surface texture analysis. Sci Rep. 2020;10(1):22073. https://doi.org/10.1038/s41598-020-79003-9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  57. Ressler A, Žužić A, Ivanišević I, Kamboj N, Ivanković H. Ionic substituted hydroxyapatite for bone regeneration applications: a review. Open Ceram. 2021;6: 100122.

    Article  CAS  Google Scholar 

  58. Uskoković V. Ion-doped hydroxyapatite: an impasse or the road to follow? Ceram Int. 2020;46(8):11443–65.

    Article  Google Scholar 

  59. Cacciotti I. Cationic and anionic substitutions in hydroxyapatite. In: Antoniac IV, editor. Handbook of bioceramics and biocomposites. Cham: Springer International Publishing; 2016. p. 145–211.

    Chapter  Google Scholar 

  60. Mehri A. Trace elements in human nutrition (II) - an update. Int J Prev Med. 2020;11:2. https://doi.org/10.4103/ijpvm.IJPVM_48_19.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Curtis EM, Cooper C, Harvey NC. Cardiovascular safety of calcium, magnesium and strontium: what does the evidence say? Aging Clin Exp Res. 2021;33(3):479–94. https://doi.org/10.1007/s40520-021-01799-x.

    Article  PubMed  PubMed Central  Google Scholar 

  62. (ATSDR) AfTSaDR. Toxicological profile for Barium. Department of Health and Human Services, Public Health Service, Atlanta, GA: US. 2007. https://wwwn.cdc.gov/TSP/PHS/PHS.aspx?phsid=325&toxid=57#:~:text=NIOSH%20considers%20exposure%20to%20barium,dangerous%20to%20life%20or%20health. Accessed 16 Jun 2023.

  63. Jiang Y, Yuan Z, Huang J. Substituted hydroxyapatite: a recent development. Mater Technol. 2020;35(11–12):785–96. https://doi.org/10.1080/10667857.2019.1664096.

    Article  CAS  ADS  Google Scholar 

  64. ten Cate JM, Buijs MJ, Miller CC, Exterkate RAM. Elevated fluoride products enhance remineralization of advanced enamel lesions. J Dent Res. 2008;87(10):943–7. https://doi.org/10.1177/154405910808701019.

    Article  PubMed  Google Scholar 

  65. Lagerweij MD, ten Cate JM. Acid susceptibility at various depths of pH-cycled enamel and dentine specimens. Caries Res. 2006;40(1):33–7. https://doi.org/10.1159/000088903.

    Article  CAS  PubMed  Google Scholar 

  66. ten Cate JM, Buijs MJ, Damen JJ. pH-cycling of enamel and dentin lesions in the presence of low concentrations of fluoride. Eur J Oral Sci. 1995;103(6):362–7. https://doi.org/10.1111/j.1600-0722.1995.tb01858.x.

    Article  PubMed  Google Scholar 

  67. Wang Y, Xiong K, Chen X, Chi Y, Han Q, Zou L. The remineralization effect of germ clean on early human enamel caries lesions in vitro. Sci Rep. 2023;13(1):4178. https://doi.org/10.1038/s41598-023-31405-1.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  68. Creanor S, Awawdeh L, Saunders W, Foye R, Gilmour W. The effect of a resin-modified glass ionomer restorative material on artificially demineralised dentine caries in vitro. J Dent. 1998;26(5–6):527–31.

    Article  CAS  PubMed  Google Scholar 

  69. Serra MC, Cury JA. The in vitro effect of glass-ionomer cement restoration on enamel subjected. Quintessence Int. 1992;23:143–7.

    CAS  PubMed  Google Scholar 

  70. Featherstone J, Ten Cate J, Shariati M, Arends J. Comparison of artificial caries-like lesions by quantitative microradiography and microhardness profiles. Caries Res. 1983;17(5):385–91.

    Article  CAS  PubMed  Google Scholar 

  71. Lo E, Zhi Q, Itthagarun A. Comparing two quantitative methods for studying remineralization of artificial caries. J Dent. 2010;38(4):352–9.

    Article  CAS  PubMed  Google Scholar 

  72. Al-Obaidi R, Salehi H, Desoutter A, Bonnet L, Etienne P, Terrer E, et al. Chemical & nano-mechanical study of artificial human enamel subsurface lesions. Sci Rep. 2018;8(1):4047. https://doi.org/10.1038/s41598-018-22459-7.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  73. Heijnsbroek M, Paraskevas S, Van der Weijden G (2007) Fluoride interventions for root caries: a review. Oral health & preventive dentistry 5(2):145–152.

  74. Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, et al. Demineralization–remineralization dynamics in teeth and bone. Int J Nanomed. 2016;11:4743.

    Article  Google Scholar 

  75. Nishitani Y, Yoshiyama M, Tay FR, Wadgaonkar B, Waller J, Agee K, et al. Tensile strength of mineralized/demineralized human normal and carious dentin. J Dent Res. 2005;84(11):1075–8. https://doi.org/10.1177/154405910508401121.

    Article  CAS  PubMed  Google Scholar 

  76. Ito S, Iijima M, Hashimoto M, Tsukamoto N, Mizoguchi I, Saito T. Effects of surface pre-reacted glass-ionomer fillers on mineral induction by phosphoprotein. J Dent. 2011;39(1):72–9.

    Article  PubMed  Google Scholar 

  77. Dai LL, Mei ML, Chu CH, Lo ECM. Remineralizing effect of a new strontium-doped bioactive glass and fluoride on demineralized enamel and dentine. J Dent. 2021;108: 103633.

    Article  CAS  PubMed  Google Scholar 

  78. Yu T, Ye J, Zhang M. Effect of magnesium doping on hydration morphology and mechanical property of calcium phosphate cement under non-calcined synthesis condition. J Am Ceram Soc. 2013;96(6):1944–50. https://doi.org/10.1111/jace.12235.

    Article  CAS  Google Scholar 

  79. Bigi A, Boanini E, Gazzano M (2016) Ion substitution in biological and synthetic apatites. Biomineralization and Biomaterials 235–66

  80. Osorio R, Osorio E, Cabello I, Toledano M. Zinc induces apatite and scholzite formation during dentin remineralization. Caries Res. 2014;48(4):276–90.

    Article  CAS  PubMed  Google Scholar 

  81. Tonetti M, Cavallero A, Botta GA, Niederman R, Eftimiadi C. Intracellular pH regulates the production of different oxygen metabolites in neutrophils: effects of organic acids produced by anaerobic bacteria. J Leukoc Biol. 1991;49(2):180–8.

    Article  CAS  PubMed  Google Scholar 

  82. Saghiri MA, Lotfi M, Saghiri AM, Vosoughhosseini S, Fatemi A, Shiezadeh V, et al. Effect of pH on sealing ability of white mineral trioxide aggregate as a root-end filling material. J Endod. 2008;34(10):1226–9. https://doi.org/10.1016/j.joen.2008.07.017.

    Article  PubMed  Google Scholar 

  83. Shokouhinejad N, Nekoofar MH, Iravani A, Kharrazifard MJ, Dummer PM. Effect of acidic environment on the push-out bond strength of mineral trioxide aggregate. J Endod. 2010;36(5):871–4. https://doi.org/10.1016/j.joen.2009.12.025.

    Article  PubMed  Google Scholar 

  84. Andrés NC, D’Elía NL, Ruso JM, AnE C, Massheimer VL, Messina PV. Manipulation of Mg2+–Ca2+ switch on the development of bone mimetic hydroxyapatite. ACS Appl Mater Interfaces. 2017;9(18):15698–710.

    Article  PubMed  Google Scholar 

  85. Saghiri MA, Saghiri A. In Memoriam: Dr. Hajar Afsar Lajevardi MD, MSc, MS (1955–2015). Iran J Pediatr. 2017. https://doi.org/10.5812/ijp.8093.

    Article  Google Scholar 

Download references

Acknowledgements

MAS is a recipient of the DenburTech, New Jersey Health Foundation, NSF-DMR-2312680, NSF-STTR- 2321456, and TechAdvance Awards. This publication is dedicated to the memory of Dr. H. Afsar Lajevardi [85], a legendary pediatrician (1953–2015) who passed. We will never forget Dr. H Afsar Lajevardi’s kindness and support. The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the affiliated organizations. The authors hereby announce that they have active cooperation in this scientific study and preparation of the present manuscript. The authors confirm that they have no financial involvement with any commercial company or organization with direct financial interest regarding the materials used in this study. Special thanks to Shuying Jiang for interpreting the results of this research and Maziar Farhadi for all his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Saghiri.

Ethics declarations

Conflict of interest

The authors deny any conflicts of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saghiri, M.A., Vakhnovetsky, J., Abdolmaleki, A. et al. Mechanical properties of simulated dentin caries treated with metal cations and l-ascorbic acid 2-phosphate. Odontology 112, 489–500 (2024). https://doi.org/10.1007/s10266-023-00868-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-023-00868-z

Keywords

Navigation