Skip to main content

Advertisement

Log in

Fabrication and characterization of low-shrinkage dental composites containing montmorillonite nanoclay

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Dental composites are aesthetic materials widely used in Dentistry for replacing hard dental tissues lost due to caries or traumas. The aim of this study was to fabricate low-shrinkage dental composite charged with nanoclay fillers (montmorillonite Cloisite®—MMT) and evaluate their cytotoxicity and physicomechanical properties. Four dental composites were produced from the same organic matrix: Bis-GMA/TEGDMA (30 wt.%). The filler system was constituted of BaSi, SiO2, and MMT in the following concentrations (wt.%): 93.8/6.2/0, 89.1/5.9/5, 86.7/5.8/7.5, and 84.4/5.6/10 (E0: 0; E5: 5%; E7.5: 7.5%; E10: 10% of MMT nanoclays). The following properties were tested: in vitro cytotoxicity, flexural strength, elastic modulus, volumetric shrinkage, water sorption, water solubility, and hygroscopic expansion. Scanning electron microscopy was used to characterize composites’ topography. Data were analyzed by one-way ANOVA and Tukey’s HSD post hoc test (p < 0.05). MMT nanoclays did not affect the cytotoxicity. E5 and E7.5 groups showed a significant decrease in polymerization shrinkage while maintained the overall physicomechanical properties. The inclusion of 5 and 7.5 wt.% of MMT nanoclays allowed the fabrication of dental composites with low cytotoxicity and low polymerization shrinkage, without jeopardizing the overall behaviour of their physicomechanical properties (flexural strength, elastic modulus, water sorption, water solubility, and hygroscopic expansion). These aspects suggest that the usage of MMT nanoclays could be an effective strategy to formulate new dental composites with clinical applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bowen RL. Properties of a silica-reinforced polymer for dental restorations. J Am Dent Assoc. 1963;66:57–64.

    Article  PubMed  Google Scholar 

  2. Reis DP, Filho JDN, Rossi AL, de Almeida NA, Portela MB, da Silva EM. Remineralizing potential of dental composites containing silanized silica-hydroxyapatite (Si-HAp) nanoporous particles charged with sodium fluoride (NaF). J Dent. 2019;90:103211.

    Article  PubMed  Google Scholar 

  3. Mucci V, Perez J, Vallo CI. Preparation and characterization of light-cured methacrylate/montmorillonite nanocomposites. Polym Int. 2011;60:247–54.

    Article  Google Scholar 

  4. Xue J, Wang J, Feng D, Huang H, Wang M. Application of antimicrobial polymers in the development of dental resin composite. Molecules. 2020;25:4738.

    Article  PubMed Central  Google Scholar 

  5. Yoshinaga K, Yoshihara K, Yoshida Y. Development of new diacrylate monomers as substitutes for Bis-GMA and UDMA. Dent Mater. 2021;37:e391–8.

    Article  PubMed  Google Scholar 

  6. Jardim RN, Rocha AA, Rossi AM, de Almeida NA, Portela MB, Lopes RT, et al. Fabrication and characterization of remineralizing dental composites containing hydroxyapatite nanoparticles. J Mech Behav Biomed Mater. 2020;109:103817.

    Article  PubMed  Google Scholar 

  7. Soares CJ, Faria ESAL, Rodrigues MP, Vilela ABF, Pfeifer CS, Tantbirojn D, et al. Polymerization shrinkage stress of composite resins and resin cements—what do we need to know? Braz Oral Res. 2017;31:62.

    Article  Google Scholar 

  8. Ferracane JL, Hilton TJ. Polymerization stress–is it clinically meaningful? Dent Mater. 2016;32:1–10.

    Article  PubMed  Google Scholar 

  9. Kaisarly D, Gezawi ME. Polymerization shrinkage assessment of dental resin composites: a literature review. Odontology. 2016;104:257–70.

    Article  PubMed  Google Scholar 

  10. Luo S, Liu F, Yu B, He J. Preparation of low shrinkage stress Bis-GMA free dental resin composites with a synthesized urethane dimethacrylate monomer. J Biomater Sci Polym Ed. 2019;30:137–49.

    Article  PubMed  Google Scholar 

  11. Schmalz G, Galler KM. Biocompatibility of biomaterials—lessons learned and considerations for the design of novel materials. Dent Mater. 2017;33:382–93.

    Article  PubMed  Google Scholar 

  12. Ferracane JL. Resin composite—state of the art. Dent Mater. 2011;27:29–38.

    Article  PubMed  Google Scholar 

  13. Jung M, Sehr K, Klimek J. Surface texture of four nanofilled and one hybrid composite after finishing. Oper Dent. 2007;32:45–52.

    Article  PubMed  Google Scholar 

  14. Senawongse P, Pongprueksa P. Surface roughness of nanofill and nanohybrid resin composites after polishing and brushing. J Esthet Restor Dent. 2007;19:265–73.

    Article  PubMed  Google Scholar 

  15. de Moraes RR, Goncalves Lde S, Lancellotti AC, Consani S, Correr-Sobrinho L, Sinhoreti MA. Nanohybrid resin composites: nanofiller loaded materials or traditional microhybrid resins? Oper Dent. 2009;34:551–7.

    Article  PubMed  Google Scholar 

  16. Ilie N, Rencz A, Hickel R. Investigations towards nano-hybrid resin-based composites. Clin Oral Investig. 2013;17:185–93.

    Article  PubMed  Google Scholar 

  17. Pontes LF, Alves EB, Alves BP, Ballester RY, Dias CG, Silva CM. Mechanical properties of nanofilled and microhybrid composites cured by different light polymerization modes. Gen Dent. 2013;61:30–3.

    PubMed  Google Scholar 

  18. Rastelli AN, Jacomassi DP, Faloni AP, Queiroz TP, Rojas SS, Bernardi MI, et al. The filler content of the dental composite resins and their influence on different properties. Microsc Res Tech. 2012;75:758–65.

    Article  PubMed  Google Scholar 

  19. Ritto FP, Moreira ES, Sampaio-Filho HR, Lacerda RA, Borges MAP, Bastian FL. Physical-mechanical evaluation of a microhybrid and nanofilled composite light activated by quartz-halogen tungsten and light-emitting diode. J Compos Mater. 2019;53:981–90.

    Article  Google Scholar 

  20. Mahmoud SH, El-Embaby AE, AbdAllah AM. Clinical performance of ormocer, nanofilled, and nanoceramic resin composites in Class I and Class II restorations: a three-year evaluation. Oper Dent. 2014;39:32–42.

    Article  PubMed  Google Scholar 

  21. Palaniappan S, Bharadwaj D, Mattar DL, Peumans M, Van Meerbeek B, Lambrechts P. Nanofilled and microhybrid composite restorations: five-year clinical wear performances. Dent Mater. 2011;27:692–700.

    Article  PubMed  Google Scholar 

  22. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep. 2000;28:1–63.

    Article  Google Scholar 

  23. Li KY, Tsai CC, Lin TC, Wang YL, Lin FH, Lin CP. Fluorinated montmorillonite and 3YSZ as the inorganic fillers in fluoride-releasing and rechargeable dental composition resin. Polymers (Basel). 2020;12:223.

    Article  Google Scholar 

  24. Yoonessi M, Toghiani H, Kingery WL, Pittman CU. Preparation, characterization, and properties of exfoliated/delaminated organically modified clay/dicyclopentadiene resin nanocomposites. Macromolecules. 2004;37:2511–8.

    Article  Google Scholar 

  25. Munhoz T, Fredholm Y, Rivory P, Balvay S, Hartmann D, da Silva P, et al. Effect of nanoclay addition on physical, chemical, optical and biological properties of experimental dental resin composites. Dent Mater. 2017;33:271–9.

    Article  PubMed  Google Scholar 

  26. Solhi L, Atai M, Nodehi A, Imani M. A novel dentin bonding system containing poly(methacrylic acid) grafted nanoclay: synthesis, characterization and properties. Dent Mater. 2012;28:1041–50.

    Article  PubMed  Google Scholar 

  27. Li KY, Tsai CC, Fang CH, Wang YL, Lin FH, Lin CP. Fluorinated montmorillonite composite resin as a dental pit and fissure sealant. Polymers (Basel). 2019;11:223.

    Article  Google Scholar 

  28. International Organization for Standardization ISO 10993-5. Biological evaluation of medical devices—part 5: tests for in vitro cytotoxicity. 3th edition. Geneva,: International Organization for Standardization ISO 10993-5. 2009.

  29. Kim J, Seo BS. How to calculate sample size and why. Clin Orthop Surg. 2013;5:235–42.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yoshii E. Cytotoxic effects of acrylates and methacrylates: relationships of monomer structures and cytotoxicity. J Biomed Mater Res. 1997;37:517–24.

    Article  PubMed  Google Scholar 

  31. Salehi S, Gwinner F, Mitchell JC, Pfeifer C, Ferracane JL. Cytotoxicity of resin composites containing bioactive glass fillers. Dent Mater. 2015;31:195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pongprueksa P, Miletic V, Janssens H, Van Landuyt KL, De Munck J, Godderis L, et al. Degree of conversion and monomer elution of CQ/amine and TPO adhesives. Dent Mater. 2014;30:695–701.

    Article  PubMed  Google Scholar 

  33. Calheiros FC, Daronch M, Rueggeberg FA, Braga RR. Influence of irradiant energy on degree of conversion, polymerization rate and shrinkage stress in an experimental resin composite system. Dent Mater. 2008;24:1164–8.

    Article  PubMed  Google Scholar 

  34. Bationo R, Rouamba A, Diarra A, Beugre-Kouassi MLA, Beugre JB, Jordana F. Cytotoxicity evaluation of dental and orthodontic light-cured composite resins. Clin Exp Dent Res. 2021;7:40–8.

    Article  PubMed  Google Scholar 

  35. Rodrigues Junior SA, Zanchi CH, Carvalho RV, Demarco FF. Flexural strength and modulus of elasticity of different types of resin-based composites. Braz Oral Res. 2007;21:16–21.

    Article  PubMed  Google Scholar 

  36. Sideridou ID, Karabela MM. Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites. Dent Mater. 2009;25:1315–24.

    Article  PubMed  Google Scholar 

  37. International Organization for Standardization ISO 4049. Dentistry-polymer-based restorative materials, 4th edition. Geneva: International Organization for Standardization ISO 4049. 2009.

  38. Chivrac F, Gueguen O, Pollet E, Ahzi S, Makradi A, Averous L. Micromechanical modeling and characterization of the effective properties in starch-based nano-biocomposites. Acta Biomater. 2008;4:1707–14.

    Article  PubMed  Google Scholar 

  39. Curtis AR, Shortall AC, Marquis PM, Palin WM. Water uptake and strength characteristics of a nanofilled resin-based composite. J Dent. 2008;36:186–93.

    Article  PubMed  Google Scholar 

  40. Ruttermann S, Wandrey C, Raab WH, Janda R. Novel nano-particles as fillers for an experimental resin-based restorative material. Acta Biomater. 2008;4:1846–53.

    Article  PubMed  Google Scholar 

  41. Tian M, Gao Y, Liu Y, Liao Y, Hedin NE, Fong H. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate. Dent Mater. 2008;24:235–43.

    Article  PubMed  Google Scholar 

  42. Xia Y, Zhang F, Xie H, Gu N. Nanoparticle-reinforced resin-based dental composites. J Dent. 2008;36:450–5.

    Article  PubMed  Google Scholar 

  43. Gomes de Araujo-Neto V, Sebold M, Fernandesde Castro E, Feitosa VP, Giannini M. Evaluation of physico-mechanical properties and filler particles characterization of conventional, bulk-fill, and bioactive resin-based composites. J Mech Behav Biomed Mater. 2021;115:104–288.

    Article  Google Scholar 

  44. Salahuddin N, Shehata M. Polymethylmethacrylate-montmorillonite composites: preparation, characterization and properties. Polymers (Basel). 2001;42:8379–85.

    Google Scholar 

  45. Campos LMP, Lugão AB, Vasconcelos MR, Parra DF. Polymerization shrinkage evaluation on nanoscale-layered silicates: Bis-GMA/TEGMA nanocomposites, in photo-activated polymeric matrices. J Appl Polym Sci. 2014;131:40010.

    Google Scholar 

  46. Goncalves L, Filho JD, Guimaraes JG, Poskus LT, Silva EM. Solubility, salivary sorption and degree of conversion of dimethacrylate-based polymeric matrixes. J Biomed Mater Res B Appl Biomater. 2008;85:320–5.

    Article  PubMed  Google Scholar 

  47. Santos C, Clarke RL, Braden M, Guitian F, Davy KW. Water absorption characteristics of dental composites incorporating hydroxyapatite filler. Biomaterials. 2002;23:1897–904.

    Article  PubMed  Google Scholar 

  48. Alshali RZ, Salim NA, Satterthwaite JD, Silikas N. Long-term sorption and solubility of bulk-fill and conventional resin-composites in water and artificial saliva. J Dent. 2015;43:1511–8.

    Article  PubMed  Google Scholar 

  49. da Silva EM, Almeida GS, Poskus LT, Guimaraes JG. Relationship between the degree of conversion, solubility and salivary sorption of a hybrid and a nanofilled resin composite. J Appl Oral Sci. 2008;16:161–6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Suiter EA, Watson LE, Tantbirojn D, Lou JS, Versluis A. Effective expansion: balance between shrinkage and hygroscopic expansion. J Dent Res. 2016;95:543–9.

    Article  PubMed  Google Scholar 

  51. Ruttermann S, Kruger S, Raab WH, Janda R. Polymerization shrinkage and hygroscopic expansion of contemporary posterior resin-based filling materials–a comparative study. J Dent. 2007;35:806–13.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the contribution of Professor Fernando Luis Bastian from Federal University of Rio de Janeiro (deceased in August 2017) for his mentorship on the doctoral thesis that supported the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio Antônio Paraizo Borges.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritto, F.P., da Silva, E.M., Borges, A.L.S. et al. Fabrication and characterization of low-shrinkage dental composites containing montmorillonite nanoclay. Odontology 110, 35–43 (2022). https://doi.org/10.1007/s10266-021-00629-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-021-00629-w

Keywords

Navigation