Skip to main content

Advertisement

Log in

Polymerization shrinkage assessment of dental resin composites: a literature review

  • Review Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Composite restorations are widely used worldwide, but the polymerization shrinkage is their main disadvantage that may lead to clinical failures and adverse consequences. This review reports, currently available in vitro techniques and methods used for assessing the polymerization shrinkage. The focus lies on recent methods employing three-dimensional micro-CT data for the evaluation of polymerization shrinkage: volumetric measurement and the shrinkage vector evaluation through tracing particles before and after polymerization. Original research articles reporting in vitro shrinkage measurements and shrinkage stresses were included in electronic and hand-search. Earlier methods are easier, faster and less expensive. The procedures of scanning the samples in the micro-CT and performing the shrinkage vector evaluation are time consuming and complicated. Moreover, the respective software is not commercially available and the various methods for shrinkage vector evaluation are based on different mathematical principles. Nevertheless, these methods provide clinically relevant information and give insight into the internal shrinkage behavior of composite applied in cavities and how boundary conditions affect the shrinkage vectors. The traditional methods give comparative information on polymerization shrinkage of resin composites, whereas using three-dimensional micro-CT data for volumetric shrinkage measurement and the shrinkage vector evaluation is a highly accurate method. The methods employing micro-CT data give the researchers knowledge related to the application method and the boundary conditions of restorations for visualizing the shrinkage effects that could not be seen otherwise. Consequently, this knowledge can be transferred to the clinical situation to optimize the material manipulation and application techniques for improved outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heintze SD, Rousson V. Clinical effectiveness of direct class II restorations—a meta-analysis. J Adhes Dent. 2012;14(5):407–31.

    PubMed  Google Scholar 

  2. Demarco FF, Corrêa MB, Cenci MS, Moraes RR, Opdam NJM. Longevity of posterior composite restorations: not only a matter of materials. Dent Mater. 2012;28(1):87–101.

    Article  PubMed  Google Scholar 

  3. Moreira da Silva E, dos Santos GO, Guimaraes JG, Barcellos Ade A, Sampaio EM. The influence of C-factor, flexural modulus and viscous flow on gap formation in resin composite restorations. Oper Dent. 2007;32(4):356–62.

    Article  PubMed  Google Scholar 

  4. Tantbirojn D, Versluis A, Pintado MR, DeLong R, Douglas WH. Tooth deformation patterns in molars after composite restoration. Dent Mater. 2004;20(6):535–42.

    Article  PubMed  Google Scholar 

  5. Feilzer AJ, De Gee AJ, Davidson CL. Setting stress in composite resin in relation to configuration of the restoration. J Dent Res. 1987;66(11):1636–9.

    Article  PubMed  Google Scholar 

  6. Kleverlaan CJ, Feilzer AJ. Polymerization shrinkage and contraction stress of dental resin composites. Dent Mater. 2005;21(12):1150–7.

    Article  PubMed  Google Scholar 

  7. Labella R, Lambrechts P, Van Meerbeek B, Vanherle G. Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent Mater. 1999;15(2):128–37.

    Article  PubMed  Google Scholar 

  8. Al-Harbi F, Kaisarly D, Bader D, El Gezawi M. Marginal integrity of bulk versus incremental fill class II composite restorations. Oper Dent. 2016;41(2):146–56.

    Article  PubMed  Google Scholar 

  9. Al-Harbi F, Kaisarly D, Michna A, ArRejaie A, Bader D, El Gezawi M. Cervical interfacial bonding effectiveness of class II bulk versus incremental fill resin composite restorations. Oper Dent. 2015;40(6):622–35.

    Article  PubMed  Google Scholar 

  10. Elderton RJ. Restorations without conventional cavity preparations. Int Dent J. 1988;38:112–8.

    PubMed  Google Scholar 

  11. Sakaguchi RL, Powers JM. Craig’s restorative dental materials. 13th ed. Philadelphia: Elsevier/Mosby; 2012. p. 161–98.

  12. Kunzelmann KH. Aufbau der Kompositfüllungswerkstoffe. In: Heinrich Friedrich Kappert KE, editor. Zahnärztliche Werkstoffe und ihre Verarbeitung, Bd. 2: Werkstoffe unter klinischen Aspekten. Stuttgart, Germany: Georg Thieme Verlag KG; 2008. p. 204–41.

  13. Condon JR, Ferracane JL. Reduction of composite contraction stress through non-bonded microfiller particles. Dent Mater. 1998;14(4):256–60.

    Article  PubMed  Google Scholar 

  14. Bekkedahl N. Volume dilatometry. J Res Natl Bur Stand. 1949;43(2):145–56.

    Article  Google Scholar 

  15. Cramer NB, Stansbury JW, Bowman CN. Recent advances and developments in composite dental restorative materials. J Dent Res. 2011;90(4):402–16.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Scientific Documentation Tetric EvoCeram® Bulk Fill. In: AG IV, editor. Schaan, Liechtenstein 2013. p. 39.

  17. Bausch JR, de Lange K, Davidson CL, Peters A, de Gee AJ. Clinical significance of polymerization shrinkage of composite resins. J Prosthet Dent. 1982;48(1):59–67.

    Article  PubMed  Google Scholar 

  18. Braem M, Lambrechts P, Vanherle G, Davidson CL. Stiffness increase during the setting of dental composite resins. J Dent Res. 1987;66(12):1713–6.

    Article  PubMed  Google Scholar 

  19. Cho E, Sadr A, Inai N, Tagami J. Evaluation of resin composite polymerization by three dimensional micro-CT imaging and nanoindentation. Dent Mater. 2011;27(11):1070–8.

    Article  PubMed  Google Scholar 

  20. Onose H, Sano H, Kanto H, Ando S, Hasuike T. Selected curing characteristics of light-activated composite resins. Dent Mater. 1985;1(2):48–54.

    Article  PubMed  Google Scholar 

  21. Watts DC, Amer O, Combe EC. Characteristics of visible-light-activated composite systems. Br Dent J. 1984;156(6):209–15.

    Article  PubMed  Google Scholar 

  22. Watts DC, Cash AJ. Determination of polymerization shrinkage kinetics in visible-light-cured materials: methods development. Dent Mater. 1991;7(4):281–7.

    Article  PubMed  Google Scholar 

  23. Price RB, Rueggeberg FA, Labrie D, Felix CM. Irradiance uniformity and distribution from dental light curing units. J Esthet Restor Dent. 2010;22(2):86–101.

    Article  PubMed  Google Scholar 

  24. Price RB, Labrie D, Whalen JM, Felix CM. Effect of distance on irradiance and beam homogeneity from 4 light-emitting diode curing units. J Can Dent Assoc. 2011;77:b9.

    PubMed  Google Scholar 

  25. Zorzin J, Maier E, Harre S, Fey T, Belli R, Lohbauer U, et al. Bulk-fill resin composites: polymerization properties and extended light curing. Dent Mater. 2015;31(3):293–301.

    Article  PubMed  Google Scholar 

  26. da Silva EM, Poskus LT, Guimaraes JG, de Araujo Lima Barcellos A, Fellows CE. Influence of light polymerization modes on degree of conversion and crosslink density of dental composites. J Mater Sci Mater Med. 2008;19(3):1027–32.

  27. Leprince JG, Leveque P, Nysten B, Gallez B, Devaux J, Leloup G. New insight into the “depth of cure” of dimethacrylate-based dental composites. Dent Mater. 2012;28(5):512–20.

    Article  PubMed  Google Scholar 

  28. Peutzfeldt A, Asmussen E. Resin composite properties and energy density of light cure. J Dent Res. 2005;84(7):659–62.

    Article  PubMed  Google Scholar 

  29. da Silva EM, Poskus LT, Guimaraes JG. Influence of light-polymerization modes on the degree of conversion and mechanical properties of resin composites: a comparative analysis between a hybrid and a nanofilled composite. Oper Dent. 2008;33(3):287–93.

    Article  PubMed  Google Scholar 

  30. Opdam NJ, Feilzer AJ, Roeters JJ, Smale I. Class I occlusal composite resin restorations: in vivo post-operative sensitivity, wall adaptation, and microleakage. Am J Dent. 1998;11(5):229–34.

    PubMed  Google Scholar 

  31. Roulet JF, Salchow B, Wald M. Margin analysis of posterior composites in vivo. Dent Mater. 1991;7(1):44–9.

    Article  PubMed  Google Scholar 

  32. Qualtrough AJ, Cramer A, Wilson NH, Roulet JF, Noack M. An in vitro evaluation of the marginal integrity of a porcelain inlay system. Int J Prosthodont. 1991;4(6):517–23.

    PubMed  Google Scholar 

  33. Chiang YC, Rösch P, Dabanoglu A, Lin CP, Hickel R, Kunzelmann KH. Polymerization composite shrinkage evaluation with 3D deformation analysis from microCT images. Dent Mater. 2010;26(3):223–31.

    Article  PubMed  Google Scholar 

  34. Li J, Li H, Liu X, Fok A, editors. A glass model cavity system for shrinkage stress assessment. IADR/AADR/CADR 89th General Session; 2011; San Diego, CA;1578.

  35. Ferracane JL. Developing a more complete understanding of stresses produced in dental composites during polymerization. Dent Mater. 2005;21(1):36–42.

    Article  PubMed  Google Scholar 

  36. Ferracane JL. Buonocore Lecture. Placing dental composites—a stressful experience. Oper Dent. 2008;33(3):247–57.

    Article  PubMed  Google Scholar 

  37. Versluis A, Douglas WH, Cross M, Sakaguchi RL. Does an incremental filling technique reduce polymerization shrinkage stresses? J Dent Res. 1996;75(3):871–8.

    Article  PubMed  Google Scholar 

  38. Braga RR, Boaro LCC, Kuroe T, Azevedo CLN, Singer JM. Influence of cavity dimensions and their derivatives (volume and ‘C’ factor) on shrinkage stress development and microleakage of composite restorations. Dent Mater. 2006;22(9):818–23.

    Article  PubMed  Google Scholar 

  39. Watts DC, Satterthwaite JD. Axial shrinkage-stress depends upon both C-factor and composite mass. Dent Mater. 2008;24(1):1–8.

    Article  PubMed  Google Scholar 

  40. Bowen RL. Adhesive bonding of various materials to hard tooth tissues. VI. Forces developing in direct-filling materials during hardening. J Am Dent Assoc (1939). 1967;74(3):439–45.

  41. Bowen RL, Nemoto K, Rapson JE. Adhesive bonding of various materials to hard tooth tissues: forces developing in composite materials during hardening. J Am Dent Assoc (1939). 1983;106(4):475–7.

  42. Hegdahl T, Gjerdet NR. Contraction stresses of composite resin filling materials. Acta Odontol Scand. 1977;35(4):191–5.

    Article  PubMed  Google Scholar 

  43. Davidson CL, Feilzer AJ. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J Dent. 1997;25(6):435–40.

    Article  PubMed  Google Scholar 

  44. Feilzer AJ, De Gee AJ, Davidson CL. Curing contraction of composites and glass-ionomer cements. J Prosthet Dent. 1988;59(3):297–300.

    Article  PubMed  Google Scholar 

  45. Feilzer AJ, De Gee AJ, Davidson CL. Quantitative determination of stress reduction by flow in composite restorations. Dent Mater. 1990;6(3):167–71.

    Article  PubMed  Google Scholar 

  46. Feilzer AJ, De Gee AJ, Davidson CL. Increased wall-to-wall curing contraction in thin bonded resin layers. J Dent Res. 1989;68(1):48–50.

    Article  PubMed  Google Scholar 

  47. Alster D, Feilzer AJ, de Gee AJ, Davidson CL. Polymerization contraction stress in thin resin composite layers as a function of layer thickness. Dent Mater. 1997;13(3):146–50.

    Article  PubMed  Google Scholar 

  48. Davidson CL, de Gee AJ. Relaxation of polymerization contraction stresses by flow in dental composites. J Dent Res. 1984;63(2):146–8.

    Article  PubMed  Google Scholar 

  49. Watts DC, Marouf AS, Al-Hindi AM. Photo-polymerization shrinkage-stress kinetics in resin-composites: methods development. Dent Mater. 2003;19(1):1–11.

    Article  PubMed  Google Scholar 

  50. Sakaguchi RL, Wiltbank BD, Murchison CF. Contraction force rate of polymer composites is linearly correlated with irradiance. Dent Mater. 2004;20(4):402–7.

    Article  PubMed  Google Scholar 

  51. Davidson CL, de Gee AJ, Feilzer A. The competition between the composite-dentin bond strength and the polymerization contraction stress. J Dent Res. 1984;63(12):1396–9.

    Article  PubMed  Google Scholar 

  52. Sakaguchi RL, Peters MC, Nelson SR, Douglas WH, Poort HW. Effects of polymerization contraction in composite restorations. J Dent. 1992;20(3):178–82.

    Article  PubMed  Google Scholar 

  53. Dullin P. Development of a measuring system for the determination of the polymerization behavior of dental composite materials. “Entwicklung eines Mess-Systems zur Untersuchung des Polymerisationsverhaltens von zahnmedizinischen Kompositfuellungswerkstoffen.” [Thesis in Engineering Technology “Feinwerk und Mikrotechnik”]: University of Munich; 1998.

  54. Chen HY, Manhart J, Hickel R, Kunzelmann KH. Polymerization contraction stress in light-cured packable composite resins. Dent Mater. 2001;17(3):253–9.

    Article  PubMed  Google Scholar 

  55. Chen HY, Manhart J, Kunzelmann KH, Hickel R. Polymerization contraction stress in light-cured compomer restorative materials. Dent Mater. 2003;19(7):597–602.

    Article  PubMed  Google Scholar 

  56. Kinomoto Y, Torii M. Photoelastic analysis of polymerization contraction stresses in resin composite restorations. J Dent. 1998;26(2):165–71.

    Article  PubMed  Google Scholar 

  57. Kinomoto Y, Torii M, Takeshige F, Ebisu S. Comparison of polymerization contraction stresses between self- and light-curing composites. J Dent. 1999;27(5):383–9.

    Article  PubMed  Google Scholar 

  58. Oliveira KM, Consani S, Goncalves LS, Brandt WC, Ccahuana-Vasquez RA. Photoelastic evaluation of the effect of composite formulation on polymerization shrinkage stress. Braz Oral Res. 2012;26(3):202–8.

    Article  PubMed  Google Scholar 

  59. Kinomoto Y, Torii M, Takeshige F, Ebisu S. Polymerization contraction stress of resin composite restorations in a model Class I cavity configuration using photoelastic analysis. J Esthet Dent. 2000;12(6):309–19.

    Article  PubMed  Google Scholar 

  60. Ernst CP, Meyer GR, Klocker K, Willershausen B. Determination of polymerization shrinkage stress by means of a photoelastic investigation. Dent Mater. 2004;20(4):313–21.

    Article  PubMed  Google Scholar 

  61. Rullmann I, Schattenberg A, Marx M, Willershausen B, Ernst CP. Photoelastic determination of polymerization shrinkage stress in low-shrinkage resin composites. Schweizer Monatsschrift fur Zahnmedizin = Revue mensuelle suisse d’odonto-stomatologie = Rivista mensile svizzera di odontologia e stomatologia/SSO. 2012;122(4):294–9.

  62. Ausiello P, Apicella A, Davidson CL. Effect of adhesive layer properties on stress distribution in composite restorations—a 3D finite element analysis. Dent Mater. 2002;18(4):295–303.

    Article  PubMed  Google Scholar 

  63. Rodrigues FP, Silikas N, Watts DC, Ballester RY. Finite element analysis of bonded model Class I ‘restorations’ after shrinkage. Dent Mater. 2012;28(2):123–32.

    Article  PubMed  Google Scholar 

  64. Sun J, Fang R, Lin N, Eidelman N, Lin-Gibson S. Nondestructive quantification of leakage at the tooth-composite interface and its correlation with material performance parameters. Biomaterials. 2009;30(27):4457–62.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lu H, Stansbury JW, Dickens SH, Eichmiller FC, Bowman CN. Probing the origins and control of shrinkage stress in dental resin-composites: I. Shrinkage stress characterization technique. J Mater Sci Mater Med. 2004;15(10):1097–103.

  66. Lu H, Stansbury JW, Dickens SH, Eichmiller FC, Bowman CN. Probing the origins and control of shrinkage stress in dental resin composites. II. Novel method of simultaneous measurement of polymerization shrinkage stress and conversion. J Biomed Mater Res B Appl Biomater. 2004;71(1):206–13.

    Article  PubMed  Google Scholar 

  67. Park JW, Ferracane JL. Residual stress in composites with the thin-ring-slitting approach. J Dent Res. 2006;85(10):945–9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Park JW, Ferracane JL. Measuring the residual stress in dental composites using a ring slitting method. Dent Mater. 2005;21(9):882–9.

    Article  PubMed  Google Scholar 

  69. Schneider LF, Cavalcante LM, Silikas N. Shrinkage stresses generated during resin-composite applications: a review. J Dent Biomech. 2010;1(1):1–14.

    Article  Google Scholar 

  70. Smith DL, Schoonover IC. Direct filling resins: dimensional changes resulting from polymerization shrinkage and water sorption. J Am Dent Assoc (1939). 1953;46(5):540–4.

  71. Rodriguez VI, Abate PF, Macchi RL. Immediate polymerization shrinkage in light cured restorative resins. Acta Odontol Latinoam: AOL. 2006;19(1):3–7.

    PubMed  Google Scholar 

  72. Penn RW. A recording dilatometer for measuring polymerization shrinkage. Dent Mater. 1986;2(2):78–9.

    Article  PubMed  Google Scholar 

  73. de Gee AJ, Davidson CL, Smith A. A modified dilatometer for continuous recording of volumetric polymerization shrinkage of composite restorative materials. J Dent. 1981;9(1):36–42.

    Article  PubMed  Google Scholar 

  74. Kullmann W. Studies on the course of polymerization shrinkage of self-cured and light-cured composites. Deutsche zahnarztliche Zeitschrift. 1989;44(9):711–3.

    PubMed  Google Scholar 

  75. Lai JH, Johnson AE. Measuring polymerization shrinkage of photo-activated restorative materials by a water-filled dilatometer. Dent Mater. 1993;9(2):139–43.

    Article  PubMed  Google Scholar 

  76. Rees JS, Jacobsen PH. The polymerization shrinkage of composite resins. Dent Mater. 1989;5(1):41–4.

    Article  PubMed  Google Scholar 

  77. Yamamoto A, Miyazaki M, Rikuta A, Kurokawa H, Takamizawa T. Comparison of two methods for measuring the polymerization characteristics of flowable resin composites. Dent Mater. 2007;23(7):792–8.

    Article  PubMed  Google Scholar 

  78. Oberholzer TG, Grobler SR, Pameijer CH, Rossouw RJ. A modified dilatometer for determining volumetric polymerization shrinkage of dental materials. Meas Sci Technol. 2002;13(1):78.

    Article  Google Scholar 

  79. Cook WD, Forrest M, Goodwin AA. A simple method for the measurement of polymerization shrinkage in dental composites. Dent Mater. 1999;15(6):447–9.

    Article  PubMed  Google Scholar 

  80. Puckett AD, Smith R. Method to measure the polymerization shrinkage of light-cured composites. J Prosthet Dent. 1992;68(1):56–8.

    Article  PubMed  Google Scholar 

  81. Lee IB, Cho BH, Son HH, Um CM. A new method to measure the polymerization shrinkage kinetics of light cured composites. J Oral Rehabil. 2005;32(4):304–14.

    Article  PubMed  Google Scholar 

  82. Weinmann W, Thalacker C, Guggenberger R. Siloranes in dental composites. Dent Mater. 2005;21(1):68–74.

    Article  PubMed  Google Scholar 

  83. Soltesz U, Bath P, Klaiber B. Dimensional behavior of dental composites due to polymerization shrinkage and water sorption. In: Christel P, Meunier A, Lee A, editors. Biological and biomechanical performance of biomaterials. Amsterdam: Elsevier; 1986. p. 123–8.

    Google Scholar 

  84. Watts DC, Marouf AS. Optimal specimen geometry in bonded-disk shrinkage-strain measurements on light-cured biomaterials. Dent Mater. 2000;16(6):447–51.

    Article  PubMed  Google Scholar 

  85. Filtek LS, Technical Product Profile. USA: 3M ESPE Dental Products; 2007.

  86. Naoum SJ, Ellakwa A, Morgan L, White K, Martin FE, Lee IB. Polymerization profile analysis of resin composite dental restorative materials in real time. J Dent. 2012;40(1):64–70.

    Article  PubMed  Google Scholar 

  87. Sharp LJ, Choi IB, Lee TE, Sy A, Suh BI. Volumetric shrinkage of composites using video-imaging. J Dent. 2003;31(2):97–103.

    Article  PubMed  Google Scholar 

  88. Lee IB, Min SH, Seo DG. A new method to measure the polymerization shrinkage kinetics of composites using a particle tracking method with computer vision. Dent Mater. 2012;28(2):212–8.

    Article  PubMed  Google Scholar 

  89. Lee HL Jr, Swartz ML, Smith FF. Physical properties of four thermosetting dental restorative resins. J Dent Res. 1969;48(4):526–35.

    Article  PubMed  Google Scholar 

  90. Wilson HJ. Properties of radiation-cured restorative resins. Proceedings of the International Symposium on Fotofil Dental Restorative. London: Franklin Scientific Projects; 1978.

    Google Scholar 

  91. Watts DC, Hindi AA. Intrinsic ‘soft-start’ polymerisation shrinkage-kinetics in an acrylate-based resin-composite. Dent Mater. 1999;15(1):39–45.

    Article  PubMed  Google Scholar 

  92. Sakaguchi RL, Sasik CT, Bunczak MA, Douglas WH. Strain gauge method for measuring polymerization contraction of composite restoratives. J Dent. 1991;19(5):312–6.

    Article  PubMed  Google Scholar 

  93. Sakaguchi RL, Versluis A, Douglas WH. Analysis of strain gage method for measurement of post-gel shrinkage in resin composites. Dent Mater. 1997;13(4):233–9.

    Article  PubMed  Google Scholar 

  94. de Gee AF, Feilzer AJ, Davidson CL. True linear polymerization shrinkage of unfilled resins and composites determined with a linometer. Dent Mater. 1993;9(1):11–4.

    Article  PubMed  Google Scholar 

  95. Fano V, Ortalli I, Pizzi S, Bonanini M. Polymerization shrinkage of microfilled composites determined by laser beam scanning. Biomaterials. 1997;18(6):467–70.

    Article  PubMed  Google Scholar 

  96. Fogleman EA, Kelly MT, Grubbs WT. Laser interferometric method for measuring linear polymerization shrinkage in light cured dental restoratives. Dent Mater. 2002;18(4):324–30.

    Article  PubMed  Google Scholar 

  97. Kweon HJ, Ferracane J, Kang K, Dhont J, Lee IB. Spatio-temporal analysis of shrinkage vectors during photo-polymerization of composite. Dent Mater. 2013;29(12):1236–43.

    Article  PubMed  Google Scholar 

  98. Yamamoto T, Kubota Y, Momoi Y, Ferracane JL. Polymerization stresses in low-shrinkage dental resin composites measured by crack analysis. Dent Mater. 2012;28(9):e143–9.

    Article  PubMed  Google Scholar 

  99. Simon Y, Mortier E, Dahoun A, Gerdolle DA. Video-controlled characterization of polymerization shrinkage in light-cured dental composites. Polym Test. 2008;27(6):717–21.

    Article  Google Scholar 

  100. Suliman AH, Boyer DB, Lakes RS. Polymerization shrinkage of composite resins: comparison with tooth deformation. J Prosthet Dent. 1994;71(1):7–12.

    Article  PubMed  Google Scholar 

  101. Sakaguchi RL, Wiltbank BD, Shah NC. Critical configuration analysis of four methods for measuring polymerization shrinkage strain of composites. Dent Mater. 2004;20(4):388–96.

    Article  PubMed  Google Scholar 

  102. Suliman AA, Boyer DB, Lakes RS. Cusp movement in premolars resulting from composite polymerization shrinkage. Dent Mater. 1993;9(1):6–10.

    Article  PubMed  Google Scholar 

  103. Rees JS, Jagger DC, Williams DR, Brown G, Duguid W. A reappraisal of the incremental packing technique for light cured composite resins. J Oral Rehabil. 2004;31(1):81–4.

    Article  PubMed  Google Scholar 

  104. Gonzalez-Lopez S, Lucena-Martin C, de Haro-Gasquet F, Vilchez-Diaz MA, de Haro-Munoz C. Influence of different composite restoration techniques on cuspal deflection: an in vitro study. Oper Dent. 2004;29(6):656–60.

    PubMed  Google Scholar 

  105. Suliman AA, Boyer DB, Lakes RS. Interferometric measurements of cusp deformation of teeth restored with composites. J Dent Res. 1993;72(11):1532–6.

    Article  PubMed  Google Scholar 

  106. Alomari QD, Reinhardt JW, Boyer DB. Effect of liners on cusp deflection and gap formation in composite restorations. Oper Dent. 2001;26(4):406–11.

    PubMed  Google Scholar 

  107. Taha NA, Palamara JE, Messer HH. Cuspal deflection, strain and microleakage of endodontically treated premolar teeth restored with direct resin composites. J Dent. 2009;37(9):724–30.

    Article  PubMed  Google Scholar 

  108. Donly KJ, Wild TW, Bowen RL, Jensen ME. An in vitro investigation of the effects of glass inserts on the effective composite resin polymerization shrinkage. J Dent Res. 1989;68(8):1234–7.

    Article  PubMed  Google Scholar 

  109. Versluis A, Tantbirojn D, Douglas WH. Distribution of transient properties during polymerization of a light-initiated restorative composite. Dent Mater. 2004;20(6):543–53.

    Article  PubMed  Google Scholar 

  110. Morin DL, Douglas WH, Cross M, DeLong R. Biophysical stress analysis of restored teeth: experimental strain measurement. Dent Mater. 1988;4(1):41–8.

    Article  PubMed  Google Scholar 

  111. Pearson GJ, Hegarty SM. Cusp movement of molar teeth with composite filling materials in conventional and modified MOD cavities. Br Dent J. 1989;166(5):162–5.

    Article  PubMed  Google Scholar 

  112. Meredith N, Setchell DJ. In vitro measurement of cuspal strain and displacement in composite restored teeth. J Dent. 1997;25(3–4):331–7.

    Article  PubMed  Google Scholar 

  113. Lee MR, Cho BH, Son HH, Um CM, Lee IB. Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration. Dent Mater. 2007;23(3):288–95.

    Article  PubMed  Google Scholar 

  114. DeLong R, Pintado M, Douglas WH. Measurement of change in surface contour by computer graphics. Dent Mater. 1985;1(1):27–30.

    Article  PubMed  Google Scholar 

  115. Chuang SF, Chang CH, Chen TY. Contraction behaviors of dental composite restorations—finite element investigation with DIC validation. J Mech Behav Biomed Mater. 2011;4(8):2138–49.

    Article  PubMed  Google Scholar 

  116. Chuang SF, Chang CH, Chen TY. Spatially resolved assessments of composite shrinkage in MOD restorations using a digital-image-correlation technique. Dent Mater. 2011;27(2):134–43.

    Article  PubMed  Google Scholar 

  117. Romanita R, Ilici C, Gatin E, Matei E, Didilescu A, Nicola C, et al. Cuspal deflection and adhesive interface integrity of low shrinking posterior composite restorations. Acta Stomatol Croat. 2010;44(3):142–51.

    Google Scholar 

  118. Bouillaguet S, Gamba J, Forchelet J, Krejci I, Wataha JC. Dynamics of composite polymerization mediates the development of cuspal strain. Dent Mater. 2006;22(10):896–902.

    Article  PubMed  Google Scholar 

  119. Lang H, Rampado M, Mullejans R, Raab WH. Determination of the dynamics of restored teeth by 3D electronic speckle pattern interferometry. Lasers Surg Med. 2004;34(4):300–9.

    Article  PubMed  Google Scholar 

  120. Huang YH, Quan C, Tay CJ, Chen LJ. Shape measurement by the use of digital image correlation. Opt Eng. 2005;44(8):087011–8.

    Article  Google Scholar 

  121. Chuang SF, Chen TY, Chang CH. Application of digital image correlation method to study dental composite shrinkage. Strain. 2008;44(3):231–8.

    Article  Google Scholar 

  122. Li J, Fok AS, Satterthwaite J, Watts DC. Measurement of the full-field polymerization shrinkage and depth of cure of dental composites using digital image correlation. Dent Mater. 2009;25(5):582–8.

    Article  PubMed  Google Scholar 

  123. Moorthy A, Hogg CH, Dowling AH, Grufferty BF, Benetti AR, Fleming GJ. Cuspal deflection and microleakage in premolar teeth restored with bulk-fill flowable resin-based composite base materials. J Dent. 2012;40(6):500–5.

    Article  PubMed  Google Scholar 

  124. Kwon Y, Ferracane J, Lee IB. Effect of layering methods, composite type, and flowable liner on the polymerization shrinkage stress of light cured composites. Dent Mater. 2012;28(7):801–9.

    Article  PubMed  Google Scholar 

  125. Abbas G, Fleming GJ, Harrington E, Shortall AC, Burke FJ. Cuspal movement and microleakage in premolar teeth restored with a packable composite cured in bulk or in increments. J Dent. 2003;31(6):437–44.

    Article  PubMed  Google Scholar 

  126. Cara RR, Fleming GJ, Palin WM, Walmsley AD, Burke FJ. Cuspal deflection and microleakage in premolar teeth restored with resin-based composites with and without an intermediary flowable layer. J Dent. 2007;35(6):482–9.

    Article  PubMed  Google Scholar 

  127. Fleming GJ, Cara RR, Palin WM, Burke FJ. Cuspal movement and microleakage in premolar teeth restored with resin-based filling materials cured using a ‘soft-start’ polymerisation protocol. Dent Mater. 2007;23(5):637–43.

    Article  PubMed  Google Scholar 

  128. Fleming GJ, Hall DP, Shortall AC, Burke FJ. Cuspal movement and microleakage in premolar teeth restored with posterior filling materials of varying reported volumetric shrinkage values. J Dent. 2005;33(2):139–46.

    Article  PubMed  Google Scholar 

  129. Fleming GJ, Khan S, Afzal O, Palin WM, Burke FJ. Investigation of polymerisation shrinkage strain, associated cuspal movement and microleakage of MOD cavities restored incrementally with resin-based composite using an LED light curing unit. J Dent. 2007;35(2):97–103.

    Article  PubMed  Google Scholar 

  130. Palin WM, Fleming GJ, Nathwani H, Burke FJ, Randall RC. In vitro cuspal deflection and microleakage of maxillary premolars restored with novel low-shrink dental composites. Dent Mater. 2005;21(4):324–35.

    Article  PubMed  Google Scholar 

  131. Lutz F, Luscher B, Ochsenbein H. In vitro evaluation of the adaptation and quality of the margins in various composite systems. Schweizerische Monatsschrift fur Zahnheilkunde = Revue mensuelle suisse d’odonto-stomatologie SSO. 1977;87(8):752–63.

  132. Qvist V, Qvist J. Replica patterns on composite restorations performed in vivo with different acid-etch restorative procedures. Scand J Dent Res. 1985;93(4):360–70.

    PubMed  Google Scholar 

  133. van Dijken JW, Horstedt P, Meurman JH. SEM study of surface characteristics and marginal adaptation of anterior resin restorations after 3–4 years. Scand J Dent Res. 1985;93(5):453–62.

    PubMed  Google Scholar 

  134. Hickel R, Peschke A, Tyas M, Mjor I, Bayne S, Peters M, et al. FDI World Dental Federation—clinical criteria for the evaluation of direct and indirect restorations. Update and clinical examples. J Adhes Dent. 2010;12(4):259–72.

    PubMed  Google Scholar 

  135. Al-Harbi F, Kaisarly D, Bader D, El Gezawi M. Marginal integrity of bulk versus incremental fill class II composite restorations. Oper Dent. 2016;41(2):146–56.

    Article  PubMed  Google Scholar 

  136. Heintze SD, Monreal D, Peschke A. Marginal quality of class II composite restorations placed in bulk compared to an incremental technique: evaluation with SEM and stereomicroscope. J Adhes Dent. 2015;17(2):147–54.

    PubMed  Google Scholar 

  137. Braga RR, Meira JB, Boaro LC, Xavier TA. Adhesion to tooth structure: a critical review of “macro” test methods. Dent Mater. 2010;26(2):e38–49.

    Article  PubMed  Google Scholar 

  138. Armstrong S, Geraldeli S, Maia R, Raposo LH, Soares CJ, Yamagawa J. Adhesion to tooth structure: a critical review of “micro” bond strength test methods. Dent Mater. 2010;26(2):e50–62.

    Article  PubMed  Google Scholar 

  139. Scherrer SS, Cesar PF, Swain MV. Direct comparison of the bond strength results of the different test methods: a critical literature review. Dent Mater. 2010;26(2):e78–93.

    Article  PubMed  Google Scholar 

  140. Pongprueksa P, De Munck J, Karunratanakul K, Barreto BC, Van Ende A, Senawongse P, et al. Dentin bonding testing using a mini-interfacial fracture toughness approach. J Dent Res. 2016;95(3):327–33.

    Article  PubMed  Google Scholar 

  141. Tagami J, Nikaido T, Nakajima M, Shimada Y. Relationship between bond strength tests and other in vitro phenomena. Dent Mater. 2010;26(2):e94–9.

    Article  PubMed  Google Scholar 

  142. Chiang YC, Rösch P, Kunzelmann KH. Polymerization shrinkage with light-initiated dental composites. Germany: Ludwig-Maximilians-Universitaet Muenchen; 2009.

    Google Scholar 

  143. Magne P. Efficient 3D finite element analysis of dental restorative procedures using micro-CT data. Dent Mater. 2007;23(5):539–48.

    Article  PubMed  Google Scholar 

  144. Versluis A, Tantbirojn D, Douglas WH. Do dental composites always shrink toward the light? J Dent Res. 1998;77(6):1435–45.

    Article  PubMed  Google Scholar 

  145. Wagner DW, Lindsey DP, Beaupre GS. Deriving tissue density and elastic modulus from microCT bone scans. Bone. 2011;49(5):931–8.

    Article  PubMed  Google Scholar 

  146. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res: Off J Am Soc Bone Miner Res. 2010;25(7):1468–86.

    Article  Google Scholar 

  147. Clementino-Luedemann TNR, Dabanoglu A, Ilie N, Hickel R, Kunzelmann K. Micro-computed tomographic evaluation of a new enzyme solution for caries removal in deciduous teeth. Dent Mater J. 2006;25(4):675–83.

    Article  PubMed  Google Scholar 

  148. Clementino-Luedemann TNR, Kunzelmann K. Mineral concentration of natural human teeth by a commercial micro-CT. Dent Mater J. 2006;25(1):113–9.

    Article  PubMed  Google Scholar 

  149. Huang TTY, Jones AS, He LH, Darendeliler MA, Swain MV. Characterisation of enamel white spot lesions using X-ray micro-tomography. J Dent. 2007;35(9):737–43.

    Article  PubMed  Google Scholar 

  150. Schwass DR, Swain MV, Purton DG, Leichter JW. A system of calibrating microtomography for use in caries research. Caries Res. 2009;43(4):314–21.

    Article  PubMed  Google Scholar 

  151. Zou W, Gao J, Jones AS, Hunter N, Swain MV. Characterization of a novel calibration method for mineral density determination of dentine by X-ray micro-tomography. Analyst. 2009;134(1):72–9.

    Article  PubMed  Google Scholar 

  152. De Santis R, Mollica F, Prisco D, Rengo S, Ambrosio L, Nicolais L. A 3D analysis of mechanically stressed dentin-adhesive-composite interfaces using X-ray micro-CT. Biomaterials. 2005;26(3):257–70.

    Article  PubMed  Google Scholar 

  153. Kakaboura A, Rahiotis C, Watts D, Silikas N, Eliades G. 3D-marginal adaptation versus setting shrinkage in light-cured microhybrid resin composites. Dent Mater. 2007;23(3):272–8.

    Article  PubMed  Google Scholar 

  154. Meleo D, Manzon L, Pecci R, Zuppante F, Bedini R. A proposal of microtomography evaluation for restoration interface gaps. Annali dell’Istituto superiore di sanita. 2012;48(1):83–8.

    PubMed  Google Scholar 

  155. Kwon O-H, Park S-H. Evaluation of internal adaptation of dental adhesive restorations using micro-CT. Restor Dent Endod. 2012;37(1):41–9.

    Article  Google Scholar 

  156. Kim HJ, Park SH. Measurement of the internal adaptation of resin composites using micro-CT and its correlation with polymerization shrinkage. Oper Dent. 2014;39(2):E57–70.

  157. Sun J, Lin-Gibson S. X-ray microcomputed tomography for measuring polymerization shrinkage of polymeric dental composites. Dent Mater. 2008;24(2):228–34.

    Article  PubMed  Google Scholar 

  158. Sun J, Eidelman N, Lin-Gibson S. 3D mapping of polymerization shrinkage using X-ray micro-computed tomography to predict microleakage. Dent Mater. 2009;25(3):314–20.

    Article  PubMed  Google Scholar 

  159. Zeiger DN, Sun J, Schumacher GE, Lin-Gibson S. Evaluation of dental composite shrinkage and leakage in extracted teeth using X-ray microcomputed tomography. Dent Mater. 2009;25(10):1213–20.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Hirata R, Clozza E, Giannini M, Farrokhmanesh E, Janal M, Tovar N, et al. Shrinkage assessment of low shrinkage composites using micro-computed tomography. J Biomed Mater Res B Appl Biomater. 2015;103(4):798–806.

    Article  PubMed  Google Scholar 

  161. Inai N, Katahira N, Hashimoto K, Tagami J, Hirakimoto A, Marshall SJ, et al., editors. Microfocus X-ray CT analysis of shrinking direction in resin composite 2002. California: San Diego; 2014.

    Google Scholar 

  162. Rösch P, Chiang YC, Kunzelmann K. Quantification of local polymerisation shrinkage from 3D micro CT images of dental composites. Int J Comput Assist Radiol Surg. 2009;4(Suppl. 1):200–1.

    Google Scholar 

  163. Takemura Y, Hanaoka K, Kawamata R, Sakurai T, Teranaka T. Three-dimensional X-ray micro-computed tomography analysis of polymerization shrinkage vectors in flowable composite. Dent Mater J. 2014;33(4):476–83.

    Article  PubMed  Google Scholar 

  164. Van Ende A, Van de Casteele E, Depypere M, De Munck J, Li X, Maes F, et al. 3D volumetric displacement and strain analysis of composite polymerization. Dent Mater. 2015;31(4):453–61.

    Article  PubMed  Google Scholar 

  165. Hill DL, Batchelor PG, Holden M, Hawkes DJ. Medical image registration. Phys Med Biol. 2001;46(3):R1–45.

    Article  PubMed  Google Scholar 

  166. Fischer B, Modersitzki J. Ill-posed medicine-an introduction to image registration. Inverse Problems. 2008;24(3):034008(p 16).

  167. Bauer S, Wiest R, Nolte LP, Reyes M. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol. 2013;58(13):R97–129.

    Article  PubMed  Google Scholar 

  168. Kunzelmann K. Analysis and quantification of wear of filling materials in vivo and in vitro. Verschleißanalyse und -quantifizierung von Füllungsmaterialien in vivo und in vitro. “Habilitationsschrift”: University of Munich; 1996.

  169. Swennen GRJ, Barth EL, Eulzer C, Schutyser F. The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull. Int J Oral Maxillofac Surg. 2007;36(2):146–52.

    Article  PubMed  Google Scholar 

  170. Sandholzer MA, Walmsley AD, Lumley PJ, Landini G. Radiologic evaluation of heat-induced shrinkage and shape preservation of human teeth using micro-CT. J Forensic Radiol Imaging. 2013;1(3):107–11.

    Article  Google Scholar 

  171. Arganda-Carreras I, Sorzano CS, Marabini R, Carazo J, Ortiz-de-Solorzano C, Kybic J. Consistent and elastic registration of histological sections using vector-spline regularization. In: Beichel R, Sonka M, editors. Computer vision approaches to medical image analysis. Lecture Notes in Computer Science. Berlin: Springer; 2006. p. 85–95.

  172. Sorzano COS, Thevenaz P, Unser M. Elastic registration of biological images using vector-spline regularization. IEEE Trans Biomed Eng. 2005;52(4):652–63.

    Article  PubMed  Google Scholar 

  173. Kybic J, Unser M. Fast parametric elastic image registration. IEEE Trans Image Process. 2003;12(11):1427–42.

    Article  PubMed  Google Scholar 

  174. Chiang YC, Rösch P, Lin CL, Hickel R, Kunzelmann K. Deformation analysis of composite polymerization shrinkage from μCT Images. Annual Meeting of the Academy of Dental Materials. 2008.

Download references

Acknowledgments

The authors would like to thank Prof. Dr. Karl-Heinz Kunzelmann for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia Kaisarly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaisarly, D., Gezawi, M.E. Polymerization shrinkage assessment of dental resin composites: a literature review. Odontology 104, 257–270 (2016). https://doi.org/10.1007/s10266-016-0264-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-016-0264-3

Keywords

Navigation