Skip to main content

Advertisement

Log in

Effectiveness and SEM–EDX analysis following bleaching with an experimental bleaching gel containing titanium dioxide and/or chitosan

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the bleaching effectiveness and mineral alterations following the use of experimental bleaching gels that included 6% hydrogen peroxide (HP), titanium dioxide (TiO2) and/or chitosan in comparison with the routinely used 35% HP bleaching gel. Thirty-six maxillary anterior teeth were divided into three groups according to bleaching agent as follows: Group 1: 6% HP + TiO2, Group 2: 6% HP + TiO2 + chitosan, Group 3: 35% HP. Tooth colour was measured with a spectrophotometer before bleaching and after sessions one and two on days 14 and 30, respectively. Colour changes were assessed with the CIEDE2000 and CIELab formulas. Mineral analysis was performed with a scanning electron microscopy–energy dispersive X-ray (SEM–EDX) device before and 14 days after application. The enamel surfaces of randomly selected samples from each group were analysed by SEM. Two-way ANOVA was used to compare differences between groups. All tested materials resulted in significantly increased bleaching compared to the initial colour values (p < 0.05). Group 3 showed significantly more whitening compared to the other groups after the first and second sessions (p < 0.05). However, Group 2 presented prolonged whitening efficiency and reached a bleaching level similar to the 35% HP treatment after 14 and 30 days. The results of the CIEDE2000 and CIELab formulas were found to be correlated (r > 0.6). The increases in Ca were similar in Groups 2 and 3 (p > 0.05) and were significantly higher than that in Group 1 (p < 0.05). p was similarly decreased among all groups (p > 0.05). The combination of 6% HP, chitosan and TiO2 appears to constitute a promising material for tooth whitening, showing good bleaching efficiency and acceptable mineral alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kihn PW. Vital tooth whitening. Dent Clin N Am. 2007;51:319–31.

    Article  PubMed  Google Scholar 

  2. Carey CM. Tooth whitening: what we now know. J Evid Based Dent Pract. 2014;14:70–6.

    Article  PubMed  Google Scholar 

  3. Joiner A. The bleaching of teeth: a review of the literature. J Dent. 2006;34:412–9.

    Article  PubMed  Google Scholar 

  4. Buchalla W, Attin T. External bleaching therapy with activation by heat, light or laser—a systematic review. Dent Mater. 2007;23:586–96.

    Article  PubMed  Google Scholar 

  5. Martín J, Ovies N, Cisternas P, Fernández E, Oliveira Junior OB, de Andrade MF, Moncada G, Vildósola P. Can an LED-laser hybrid light help to decrease hydrogen peroxide concentration while maintaining effectiveness in teeth bleaching? Laser Phys. 2015;25:025608.

    Article  Google Scholar 

  6. Gurgan S, Alpaslan T, Kiremitci A, Cakir FY, Yazıcı E, Gorucu J. Effect of different adhesive systems and laser treatment on the shear bond strength of bleached enamel. J Dent. 2009;37:527–34.

    Article  PubMed  Google Scholar 

  7. Directive C. 84/EU. Off J Eur Union OJEU. 2011;2011:36–8.

    Google Scholar 

  8. Minoux M, Serfaty R. Vital tooth bleaching: biologic adverse effects—a review. Quintessence Int. 2008;39:645–59.

    PubMed  Google Scholar 

  9. Lu L, Yoshikawa K, Komatsu O, Hirota Y, Hattori Y, Inoue C, Yasuo K, Tanimoto H, Iwata N, Wu B, Yamamoto K. Evaluation of a tooth bleaching system incorporating titanium dioxide: influence of the concentrations of hydrogen peroxide and titanium dioxide on bleaching effect. J Osaka Dent Univ. 2013;47:209–14.

    Google Scholar 

  10. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37.

    Article  PubMed  Google Scholar 

  11. Chatterjee S, Chatterjee T, Lim SR, Woo SH. Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation. Environ Technol. 2011;32:1503–14.

    Article  PubMed  Google Scholar 

  12. Wang C-Y, Yang C-H, Huang K-S, Yeh CS, Wang AHJ, Chen CH. Electrostatic droplets assisted in situ synthesis of superparamagnetic chitosan microparticles for magnetic-responsive controlled drug release and copper ion removal. J Mater Chem B. 2013;1:2205–12.

    Article  PubMed  Google Scholar 

  13. Cruz-Romero M, Murphy T, Morris M, Cummins E, Kerry J. Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control. 2013;34:393–7.

    Article  Google Scholar 

  14. Jayakumar R, Ramachandran R, Divyarani V, Chennazhi KP, Tamura H, Nair SV. Fabrication of chitin–chitosan/nano TiO2-composite scaffolds for tissue engineering applications. Int J Biol Macromol. 2011;48:336–44.

    Article  PubMed  Google Scholar 

  15. Podust T, Kulik T, Palyanytsya B, Gun’Ko VM, Tóth A, Mikhalovska L, Menyhárd A, László K. Chitosan-nanosilica hybrid materials: preparation and properties. Appl Surf Sci. 2014;320:563–9.

    Article  Google Scholar 

  16. Vilhena KFB, Nogueira BCL, Fagundes NCF, Loretto SC, Angelica RS, Lima RR, et al. Dental enamel bleached for a prolonged and excessive time: Morphological changes. PloS One. 2019;14:e0214948.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ursus Wetter N, Walverde D, Kato IT, De Paula EC. Bleaching efficacy of whitening agents activated by xenon lamp and 960-nm diode radiation. Photomed Laser Ther. 2004;22:489–93.

    Article  Google Scholar 

  18. Luo MR, Cui G, Rigg B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Col Res Appl. 2001;26:340–50.

    Article  Google Scholar 

  19. Ghinea R, Pérez MM, Herrera LJ, Rivas MJ, Yebra A, Paravina RD. Color difference thresholds in dental ceramics. J Dent. 2010;38:e57–e64.

    Article  PubMed  Google Scholar 

  20. Barbour M, Rees J. The laboratory assessment of enamel erosion: a review. J Dent. 2004;32:591–602.

    Article  PubMed  Google Scholar 

  21. Meireles SS, Goettems ML, Dantas RVF, Bona ÁD, Santos IS, Demarco FF. Changes in oral health related quality of life after dental bleaching in a double-blind randomized clinical trial. J Dent. 2014;42:114–21.

    Article  PubMed  Google Scholar 

  22. Bortolatto JF, Trevisan TC, Bernardi PSI, Fernandez E, Dovigo LN, Loguercio AD, Junior OBO, Pretel H. A novel approach for in-office tooth bleaching with 6% H2O2/TiON and LED/laser system—a controlled, triple-blinded, randomized clinical trial. Lasers Med Sci. 2016;31:437–44.

    Article  PubMed  Google Scholar 

  23. Bapat RA, Joshi CP, Bapat P, Chaubal TV, Pandurangappa R, Jnanendrappa N, Gorain B, Khurana S, Kesharwani P. The use of nanoparticles as biomaterials in dentistry. Drug Discov Today. 2019;24:85–988.

    Article  PubMed  Google Scholar 

  24. Ito Y, Momoi Y. Bleaching using 30% hydrogen peroxide and sodium hydrogen carbonate. Dent Mater J. 2011;30:193–8.

    Article  PubMed  Google Scholar 

  25. Grimes CA, Mor GK. TiO2 nanotube arrays: synthesis, properties, and applications. New York: Springer Science & Business Media; 2009.

    Book  Google Scholar 

  26. Li M, Sheu D. Influences of preparation conditions on bactericidal efficacy of TiO2 containing coating. MS Thesis. Tatung University, Zhongshan, Taipei, Taiwan; 2004.

  27. Cuppini M, Leitune VCB, Souza M, Alves AK, Samuel SMW, Collares FM. In vitro evaluation of visible light-activated titanium dioxide photocatalysis for in-office dental bleaching. Dent Mater J. 2019;30:68–74.

    Article  Google Scholar 

  28. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B. 2012;125:331–49.

    Article  Google Scholar 

  29. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B. 2003;107:4545–9.

    Article  Google Scholar 

  30. Kurzmann C, Verheyen J, Coto M, Kumar RV, Divitini G, Shokoohi-Tabrizi HA, Verheyen P, DeMoor RJG, Mortiz A, Agis H. In vitro evaluation of experimental light activated gels for tooth bleaching. Photochem Photobiol Sci. 2019;18(5):1009–19.

    Article  PubMed  Google Scholar 

  31. Kishi A, Otsuki M, Sadr A, Ikeda M, Tagami J. Effect of light units on tooth bleaching with visible-light activating titanium dioxide photocatalyst. Dent Mater J. 2011;30:723–9.

    Article  PubMed  Google Scholar 

  32. Suyama Y, Otsuki M, Ogisu S, Kishikawa R, Tagami J, Ikeda M, Kurata H, Cho T. Effects of light sources and visible light-activated titanium dioxide photocatalyst on bleaching. Dent Mater J. 2009;28:693–9.

    Article  PubMed  Google Scholar 

  33. Arnaud TMS, de Barros NB, Diniz FB. Chitosan effect on dental enamel de-remineralization: an in vitro evaluation. J Dent. 2010;38:848–52.

    Article  PubMed  Google Scholar 

  34. Lee HS, Tsai S, Kuo CC, Bassani AW, Pepe-Mooney B, Miksa D, Masters J, Sullivan R, Composto RJ. Chitosan adsorption on hydroxyapatite and its role in preventing acid erosion. J Colloid Interface Sci. 2012;385:235–43.

    Article  PubMed  Google Scholar 

  35. Li H, Du Y, Xu Y, Zhan H, Kennedy JF. Interactions of cationized chitosan with components in a chemical pulp suspension. Carbohydr Polym. 2004;58:205–14.

    Article  Google Scholar 

  36. Mourouzis P, Koulaouzidou EA, Helvatjoglu-Antoniades M. Effect of in-office bleaching agents on physical properties of dental composite resins. Quintessence Int. 2013;44:295–302.

    PubMed  Google Scholar 

  37. Hasegawa A, Ikeda I, Kawaguchi S. Color and translucency of in vivo natural central incisors. J Prosthet Dent. 2000;83:418–23.

    Article  PubMed  Google Scholar 

  38. del Mar Pérez M, Saleh A, Yebra A, Pulgar R. Study of the variation between CIELAB ΔE* and CIEDE2000 color-differences of resin composites. Dent Mater J. 2007;26:21–8.

    Article  Google Scholar 

  39. Barry TN, Bailey C, Ashcraft-Olmscheid D, Vandewalle KS. Effect of a new bleaching gel on tooth whitening. Oper Dent. 2017;42:559–66.

    Article  PubMed  Google Scholar 

  40. Mohamed R, Baeissa E. Preparation and characterisation of Pd–TiO2–hydroxyapatite nanoparticles for the photocatalytic degradation of cyanide under visible light. Appl Catal A Gen. 2013;464:218–24.

    Article  Google Scholar 

  41. Liu HT, Li WM, Xu G, Li XY, Bai XF, Wei P, Yu C, Du YG. Chitosan oligosaccharides attenuate hydrogen peroxide-induced stress injury in human umbilical vein endothelial cells. Pharmacol Res. 2009;59:167–75.

    Article  PubMed  Google Scholar 

  42. Li Z, Dou H, Fu Y, Qin M. Improving the hydrogen peroxide bleaching efficiency of aspen chemithermomechanical pulp by using chitosan. Carbohydr Polym. 2015;132:430–6.

    Article  PubMed  Google Scholar 

  43. Hwang J, Kim H, Yoon S, Pyun Y. Bactericidal activity of chitosan on E. coli. Adv Chitin Sci. 1998;3:340–4.

    Google Scholar 

  44. Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71:505–18.

    Article  PubMed  Google Scholar 

  45. Pantaroto HN, Ricomini-Filho AP, Bertolini MM, da Silva DJH, Azevedo Neto NF, Sukotjo C, Rangel EC, Barão VAR. Antibacterial photocatalytic activity of different crystalline TiO2 phases in oral multispecies biofilm. Dent Mater. 2018;34:e182–e195195.

    Article  PubMed  Google Scholar 

  46. Hosoya N, Honda K, Iino F, Arai T. Changes in enamel surface roughness and adhesion of Streptococcus mutans to enamel after vital bleaching. J Dent. 2003;31:543–8.

    Article  PubMed  Google Scholar 

  47. Cakir F, Korkmaz Y, Firat E, Oztas S, Gurgan S. Chemical analysis of enamel and dentin following the application of three different at-home bleaching systems. Oper Dent. 2011;36:529–36.

    Article  PubMed  Google Scholar 

  48. Cavalli V, Rodrigues LK, Paes-Leme AF, Brancalion ML, Arruda MA, Berger SB, Giannini M. Effects of bleaching agents containing fluoride and calcium on human enamel. Quintessence Int. 2010;41:e157–e165.

    PubMed  Google Scholar 

  49. Llena C, Esteve I, Rodríguez-Lozano FJ, Forner L. The application of casein phosphopeptide and amorphous calcium phosphate with fluoride (CPP-ACPF) for restoring mineral loss after dental bleaching with hydrogen or carbamide peroxide: an in vitro study. Ann Anat. 2019;225:48–53.

    Article  PubMed  Google Scholar 

  50. Soares DG, Ribeiro AP, Sacono NT, Loguércio AD, Hebling J, Costa CA. Mineral loss and morphological changes in dental enamel induced by a 16% carbamide peroxide bleaching gel. Braz Dent J. 2013;24:517–21.

    Article  PubMed  Google Scholar 

  51. Musanje L, Darvell B. Aspects of water sorption from the air, water and artificial saliva in resin composite restorative materials. Dent Mater. 2003;19:414–22.

    Article  PubMed  Google Scholar 

  52. Pinto A, Bridi EC, Amaral F, França F, Turssi CP, Pérez CA, Martinez EF, Flório FM, Basting RT. Enamel mineral content changes after bleaching with high and low hydrogen peroxide concentrations: colorimetric spectrophotometry and total reflection X-ray fluorescence analyses. Oper Dent. 2017;42:308–18.

    Article  PubMed  Google Scholar 

  53. Llena C, Esteve I, Forner L. Effects of in-office bleaching on human enamel and dentin. Morphological and mineral changes. Ann Anat. 2018;217:97–102.

    Article  PubMed  Google Scholar 

  54. Ruan Q, Zhang Y, Yang X, Nutt S, Moradian-Oldak J. An amelogenin–chitosan matrix promotes assembly of an enamel-like layer with a dense interface. Acta Biomater. 2013;9:7289–97.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Swain MV, Xue J. State of the art of micro-CT applications in dental research. Int J Oral Sci. 2009;4:177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derya Sürmelioğlu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. All authors have read and approved the final article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sürmelioğlu, D., Özçetin, H.K., Özdemir, Z.M. et al. Effectiveness and SEM–EDX analysis following bleaching with an experimental bleaching gel containing titanium dioxide and/or chitosan. Odontology 109, 114–123 (2021). https://doi.org/10.1007/s10266-020-00526-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-020-00526-8

Keywords

Navigation