Skip to main content
Log in

Identification and expression profiling analysis of ascorbate peroxidase gene family in Actinidia chinensis (Hongyang)

  • Regular Paper – Physiology/Biochemistry/Molecular and Cellular Biology
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Ascorbate peroxidase (APX) is one of the important antioxidant enzymes in the active oxygen metabolism pathway of plants and animals, especially it is the key enzyme to clear H2O2 in chloroplast and the main enzyme of vitamin C metabolism. However, knowledge about APX gene family members and their evolutionary and functional characteristics in kiwifruit is limited. In this study, we identified 13 members of the APX gene family in the kiwifruit (cultivar: Hongyang) genome according the APX proteins conserved domain of Arabidopsis thaliana. Phylogenetic analysis by maximum likelihood split these 13 genes into four groups. The APX gene family members were distributed on nine chromosomes (Nos. 4, 5, 11, 13, 20, 21, 23, 25, 28). Most of the encoded hydrophilic and lipid-soluble enzymes were predicted to be located in the cytoplasm, nucleus and chloroplast. Among them, AcAPX4, AcAPX5, AcAPX8, AcAPX12 were transmembrane proteins, and AcAPX8 and AcAPX12 had the same transmembrane domain. The gene structure analysis showed that AcAPXs were composed of 4-22 introns, except that AcAPX10 was intron-free. Multiple expectation maximization for motif elicitation program (MEME) analyzed 13 APX protein sequences of Actinidia chinensis and identified 10 conserved motifs ranging in length from 15 to 50 amino acid residues. Additionally, the predicted secondary structures of the main motifs consisted of α-helix and random coils. The gene expression of fruits in different growth stages and bagging treatment were determined by qRT-PCR. The results showed that 8 AcAPXs had the highest expression levels during the color turning period and only the gene expression of AcAPX3 was consistent with the ascorbic acid content; five AcAPXs were consistent with the ascorbic acid content after bagging. Our data provided evolutionary and functional information of AcAPX gene family members and revealed the gene expression of different members in different growth stages and bagging treatments These results may be useful for future studies of the structures and functions of AcAPX family members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by the Project support by the National Natural Science Foundation of China (Grant nos. 31760559, 31760567), Key research and development plan of Jiangxi science and technology department (Grant no. 20192ACB60002) and the Jiangxi Provincial Construction of Kiwifruit Industry Technology System (Grant no. JXARS-05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Zhong or Xiao-Biao Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 6 kb)

Supplementary material 2 (PDF 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, GL., Liu, Q., Li, YQ. et al. Identification and expression profiling analysis of ascorbate peroxidase gene family in Actinidia chinensis (Hongyang). J Plant Res 133, 715–726 (2020). https://doi.org/10.1007/s10265-020-01206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-020-01206-y

Keywords

Navigation