Skip to main content
Log in

Comparative exine development from the post-tetrad stage in the early-divergent lineages of Ranunculales: the genera Euptelea and Pteridophyllum

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Studies of pollen wall development produce a great deal of morphological data that supplies useful information regarding taxonomy and systematics. We present the exine development of Euptelea and Pteridophyllum, two taxa whose pollen wall development has never previously been studied using transmission electron microscopy. Both genera are representatives of the two earliest-diverging families of the order Ranunculales and their pollen data are important for the diagnosis of the ancestral pollen features in eudicots. Our observations show these genera are defined by having microechinate microreticulate exine ornamentation, perforate tectum, columellate morphology of the infratectum and the existence of a foot layer and endexine. The presence of lamellations is detected during the early stages of development in the nexine of both genera, especially in the apertures. Euptelea presents remains of the primexine layer during the whole maturation process, a very thin foot layer, and a laminate exinous oncus in the apertural region formed by ectexine and endexine elements. Pteridophyllum has a thicker tectum than Euptelea, a continuous foot layer and a thicker endexine. In the apertures, the exinous oncus is formed by islets and granules of endexine, in contrast to the Euptelea apertures. The secretory tapetum produces orbicules in both genera, but they have different morphology and electron-density. Comparisons with pollen data from related orders and families confirm the ancestral states for the pollen of eudicots proposed in previous studies: reticulate and echinate surfaces, columellate infractectum and a thin foot layer relative to the thickness of the ectexine. According to our observations, we propose considering the possibility of a polymorphic state for the aperture number in the ancestor of Ranunculales, and suggest the development of orbicules as the ancestral state in this order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Blackmore S, Stafford P, Persson V (1995) Palynology and systematics of Ranunculiflorae. Plant Syst Evol 9 (Suppl):71–82

    Google Scholar 

  • Blackmore S, Wortley AH, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytol 174:483–498

    Article  CAS  PubMed  Google Scholar 

  • Blackmore S, Wortley AH, Skvarla JJ, Gabarayeva NI, Rowley JR (2010) Developmental origins of structural diversity in pollen walls of Compositae. Plant Syst Evol 284:17–32

    Article  Google Scholar 

  • Candau P (1987) Fumariaceae. In: Váldes B, Díez MJ, Fernández I (eds) Atlas polínico de Andalucía occidental. Instituto de desarrollo regional n 43, Univ Sevilla, Excma Diputación de Cádiz, pp 84–89

  • Clarke GCS, Punt W, Hoen PP (1991) Ranunculaceae. The northwest European pollen flora, 51. Rev Palaeobot Palynol 69:117–271

    Article  Google Scholar 

  • Claxton F, Banks H, Klitgaard BB, Crane PR (2005) Pollen morphology of families Quillajaceae and Surianaceae (Fabales). Rev Palaeobot Palynol 133:221–233

    Article  Google Scholar 

  • Dahl ÅE (1990) Infrageneric division of the genus Hypecoum (Papaveraceae). Nord J Bot 10:129–140

    Article  Google Scholar 

  • Dobritsa AA, Coerper D (2012) The novel plant protein IN APERTURATE POLLEN1 marks distinct cellular domains and control formation of apertures in the Arabidopsis pollen exine. Plant Cell 24:4452–4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JA (2005) Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana 44:227–251

    Article  Google Scholar 

  • Doyle JA (2009) Evolutionary significance of granular exine structure in the light of phylogenetic analyses. Rev Palaeobot Palynol 156:198–210

    Article  Google Scholar 

  • Echlin P, Godwin H (1969) The ultrastructure and ontogeny of the pollen in Helleborus foetidus L. III. The formation of the pollen grain wall. J Cell Sci 5:459–477

    CAS  PubMed  Google Scholar 

  • Erdtman G (1952) Pollen morphology and plant taxonomy. Almqvist and Wiksell, Stockholm

    Google Scholar 

  • Erdtman G (1960) The acetolysis method, a revised description. Svensk Botanisk Tidskrift 54:561–564

    Google Scholar 

  • Erdtman G (1969) Handbook of palynology. Morphology, taxonomy, ecology: an introduction to the study of pollen grains and spores. Munksgaard, Copenhagen

    Google Scholar 

  • Fernández MC, Rodríguez-García MI (1989) Developmental changes in the aperture during pollen grain ontogeny in Olea europaea L. New Phytol 111:717–723

    Article  Google Scholar 

  • Furness CA (2008a) Successive microsporogenesis in eudicots, with particular reference to Berberidaceae (Ranunculales). Plant Syst Evol 273:211–223

    Article  Google Scholar 

  • Furness CA (2008b) A review of the distribution of plasmodial and invasive tapeta in eudicots. Int J Plant Sci 169:207–223

    Article  Google Scholar 

  • Furness CA, Rudall PJ (2001) The tapetum in basal angiosperms: early diversity. Int J Plant Sci 162:357–392

    Article  Google Scholar 

  • Furness CA, Magallón S, Rudall PJ (2007) Evolution of endoapertures in early-divergent eudicots, with particular reference to pollen morphology in Sabiaceae. Plant Syst Evol 263:77–92

    Article  Google Scholar 

  • Gabarayeva NI, Hemsley AR (2006) Merging concepts: the role of self-assembly in the development of pollen wall structure. Rev Palaeobot Palynol 138:121–139

    Article  Google Scholar 

  • Gabarayeva NI, Grigorjeva VV, Rowley JR, Hemsley AR (2009) Sporoderm development in Treversia burckii (Araliaceae) II. Post tetrad period: further evidence for the participation of self-assembly processes. Rev Palaeobot Palynol 156:233–247

    Article  Google Scholar 

  • Gabarayeva NI, Grigorjeva VV, Rowley JR (2010) Sporoderm development in Acer tataricum (Aceraceae): an interpretation. Protoplasma 247:65–81

    Article  PubMed  Google Scholar 

  • Gabarayeva NI, Grigorjeva VV, Kosenko Y (2013a) I. Primexine development in Passiflora racemosa Brot.: overlooked aspects of development. Plant Syst Evol 299:1013–1035

    Article  CAS  Google Scholar 

  • Gabarayeva NI, Grigorjeva VV, Kosenko Y (2013b) II. Exine development in Passiflora racemosa Brot.: post-tetrad period Overlooked aspects of development. Plant Syst Evol 299:1037–1055

    Article  Google Scholar 

  • Hemsley AR, Gabarayeva NI (2007) Exine development: the importance of looking through a colloid chemistry window. Plant Syst Evol 263:25–49

    Article  Google Scholar 

  • Hesse M, Halbritter H, Zetter R, Weber R, Buchner R, Frosh-Radivo A, Ullrich S (2009) Pollen terminology: an illustrated handbook. Springer, New York

    Google Scholar 

  • Hoot SB, Kadereit JW, Blattner FR, Jork KB, Schwarzbach AE, Crane PR (1997) Data congruence and phylogeny of the Papaveraceae sl based on four data sets: atpB and rbcL sequences, trnK restriction sites, and morphological characters. Syst Bot 22:575–590

    Article  Google Scholar 

  • Hoot SB, Magallón-Puebla S, Crane PR (1999) Phylogeny of basal eudicots based on three molecular data sets: atpB, rbcL and 18S nuclear ribosomal DNA sequences. Ann Missouri Bot Gard 86:119–131

    Article  Google Scholar 

  • Hoot SB, Wefferling KM, Wulf JA (2015) Phylogeny and Character Evolution of Papaveraceae sl (Ranunculales). Syst Bot 40:474–488

    Article  Google Scholar 

  • Kalis AJ (1979) Papaveraceae. The Northwest European Pollen Flora 20. Rev Palaeobot Palynol 28:200–260

    Article  Google Scholar 

  • Kreunen SS, Osborn JM (1999) Pollen and anther development in Nelumbo (Nelumbonaceae). Am J Bot 86:1662–1676

    Article  CAS  PubMed  Google Scholar 

  • Layka S (1976) Les méthodes modernes de la palynologie appliquées à l’étude des papaverales. Thèse d’Etat, Montpellier, p 318

    Google Scholar 

  • Lidén M (1993) Fumariaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol. 2: flowering plants, dicotyledons: Magnoliid, hamamelid, and caryophyllid families. Springer, Heidelberg

    Google Scholar 

  • Nowicke JW, Skvarla JJ (1982) Pollen morphology and the relationships of Circaeaster, of Kingdonia, and of Sargentodoxa to the Ranunculales. Am J Bot 69:990–998

    Article  Google Scholar 

  • Owen HA, Makaroff CA (1995) Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L.) Heynh. Ecotype Wassilewskija (Brassicaceae). Protoplasma 185:7–21

    Article  Google Scholar 

  • Pérez-Gutiérrez MA, Suárez-Santiago VN, Fernández MC, Salinas Bonillo MJ, Romero-García AT (2015a) Pollen morphology and post-tetrad wall development in the subfamily Fumarioideae (Papaveraceae). Rev Palaeobot Palynol 222:33–47

    Article  Google Scholar 

  • Pérez-Gutiérrez MA, Romero-García AT, Fernández MC, Blanca G, Salinas-Bonillo MJ, Suárez-Santiago VN (2015b) Evolutionary history of fumitories (subfamily Fumariodieae, Papaveraceae): an old history shaped by the main geological and climatic events in the Northern Hemisphere. Mol Phylogenet Evol 88:75–92

    Article  PubMed  Google Scholar 

  • Praglowski J (1974) World pollen and spore flora 3, Angiospermae. Magnoliaceae Juss, Stockholm

    Google Scholar 

  • Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palynol 143:1–81

    Article  Google Scholar 

  • Ren Y, Li H-F, Zhao L, Endress PK (2007) Floral morphogenesis in Euptelea (Eupteleaceae, Ranunculales). Ann Bot 100:185–193

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero AT, Fernández MC (2000) Development of exine and apertures in Fumaria densiflora DC from the tetrad stage to maturity. In: Harley MM, Morton CM, Blackmore S (eds) Pollen and spores: Morphology and Biology. Royal Botanic Gardens, Kew, pp 45–56

    Google Scholar 

  • Romero AT, Salinas MJ, Fernández MC (2003) Pollen wall development in Hypecoum imberbe (Fumariaceae). Grana 42:91–101

    Google Scholar 

  • Rowley JR (1992) Pollen of Cercidiphyllum (Cercidiphyllaceae). Bot Zh Ross Akad Nauk 77:1–3

    Google Scholar 

  • Sauquet H, Carrive L, Poullain N, Sannier J, Damerval C, Nadot S (2015) Zygomorphy evolved from disymmetry in Fumarioideae (Papaveraceae, Ranunculales): new evidence from an expanded molecular phylogenetic framework. Ann Bot 115:895–914

    Article  PubMed  PubMed Central  Google Scholar 

  • Soltis DE, Smith SA, Cellinese N et al (2011) Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot 98:704–730

    Article  PubMed  Google Scholar 

  • Taylor ML, Cooper RL, Schneider EL, Osborn JM (2015) Pollen structure and development in Nymphaeales: Insights into character evolution in an ancient angiosperm lineage. Am J Bot 102:1685–1702

    Article  PubMed  Google Scholar 

  • Teixeira MDR, Amorim AM, Riberio FA (2013) Pollen morphology of Menispermaceae in the state of Bahia, Brazil. Acta Bot Bras 27:436–444

    Article  Google Scholar 

  • Van Campo M (1971) Précisions nouvelles sur les structures comparées des pollens de Gymnospermes et d’Angiospermes. CompteRendudel’Académiedes Sciencesde France 272:2071–2074

    Google Scholar 

  • Verstraete B, Moon H-K, Smets E, Huysmans S (2014) Orbicules in flowering plants: a phylogenetic perspective on their form and function. Bot Rev 80:107–134

    Article  Google Scholar 

  • Walker JW (1974) Aperture evolution in the pollen grains of primitive angiosperms. Am J Bot 61:1112–1136

    Article  Google Scholar 

  • Wang W, Lu AM, Ren Y, Endress ME, Chen ZD (2009) Phylogeny and classification of Ranunculales: evidence from four molecular loci and morphological data. Perspect Plant Ecol Evol Syst 11:81–110

    Article  Google Scholar 

  • Worberg A, Quandt D, Barniske A-M, Löhne C, Hilu KW, Borsch T (2007) Phylogeny of basal eudicots: insights from non-coding and rapidly evolving DNA. Org Divers Evol 7:55–77

    Article  Google Scholar 

  • Wortley AH, Wang H, Lu L, Li D-Z, Blackmore S (2015) Evolution of angiosperm pollen. 1 Introduction. Ann Missouri Bot Gard 100:177–226

    Article  Google Scholar 

  • Zavada MS, Dilcher DL (1986) Comparative pollen morphology and its relationship to phylogeny of pollen in the Hamamelidae. Ann Missouri Bot Gard 73:348–381

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministry of Science and Innovation (CGL2008-01554/BOS) and by the Andalusian Regional Ministry of Economy, Innovation and Science (P12.RNM2680). We thank the staff of the National Botanic Garden of Belgium and of the Gothenburg Botanical Garden for their support and help for sampling the pollen material, and to Concepción Hernández Castillo, María José Martínez Guerrero and Isabel Sánchez Almazo of the Scientific Instrumentation Centre of the University of Granada for preparing our samples for TEM and SEM visualisation. The authors also thank Dr. James Doyle for his helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Pérez-Gutiérrez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 355 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Gutiérrez, M.A., Fernández, M., Salinas-Bonillo, M.J. et al. Comparative exine development from the post-tetrad stage in the early-divergent lineages of Ranunculales: the genera Euptelea and Pteridophyllum . J Plant Res 129, 1085–1096 (2016). https://doi.org/10.1007/s10265-016-0862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-016-0862-8

Keywords

Navigation