Skip to main content
Log in

Light-dependent gravitropism and negative phototropism of inflorescence stems in a dominant Aux/IAA mutant of Arabidopsis thaliana, axr2

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Gravitropism and phototropism of the primary inflorescence stems were examined in a dominant Aux/IAA mutant of Arabidopsis, axr2/iaa7, which did not display either tropism in hypocotyls. axr2-1 stems completely lacked gravitropism in the dark but slowly regained it in light condition. Though wild-type stems showed positive phototropism, axr2 stems displayed negative phototropism with essentially the same light fluence-response curve as the wild type (WT). Application of 1-naphthaleneacetic acid-containing lanolin to the stem tips enhanced the positive phototropism of WT, and reduced the negative phototropism of axr2. Decapitation of stems caused a small negative phototropism in WT, but did not affect the negative phototropism of axr2. p-glycoprotein 1 (pgp1) pgp19 double mutants showed no phototropism, while decapitated double mutants exhibited negative phototropism. Expression of auxin-responsive IAA14/SLR, IAA19/MSG2 and SAUR50 genes was reduced in axr2 and pgp1 pgp19 stems relative to that of WT. These suggest that the phototropic response of stem is proportional to the auxin supply from the shoot apex, and that negative phototropism may be a basal response to unilateral blue-light irradiation when the levels of auxin or auxin signaling are reduced to the minimal level in the primary stems. In contrast, all of these treatments reduced or did not affect gravitropism in wild-type or axr2 stems. Tropic responses of the transgenic lines that expressed axr2-1 protein by the endodermis-specific promoter suggest that AXR2-dependent auxin response in the endodermis plays a more crucial role in gravitropism than in phototropism in stems but no significant roles in either tropism in hypocotyls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Band LR, Wells DM, Larrieu A, Sun J, Middleton AM, French AP, Brunoud G, Sato EM, Wilson MH, Péret B, Oliva M, Swarup R, Sairanen I, Parry G, Ljung K, Beeckman T, Garibaldi JM, Estelle M, Owen MR, Vissenberg K, Hodgman C, Pridmore TP, King JR, Vernoux T, Bennett MJ (2012) Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc Natl Acad Sci USA 109:4668–4673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465

    Article  CAS  PubMed  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950

    Article  CAS  PubMed  Google Scholar 

  • Britz SJ, Galston AW (1983) Physiology of movements in the stems of seedling Pisum sativum L. cv Alaska. III. Phototropism in relation to gravitropism, nutation, and growth. Plant Physiol 71:313–318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calderón Villalobos LIA, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L, Sheard LB, Tan X, Parry G, Mao H, Zheng N, Napier R, Kepinski S, Estelle M (2012) A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nature Chem Biol 8:477–485

    Article  Google Scholar 

  • Christie JM, Yang H, Richter GL, Sullivan S, Thomson CE, Lin J, Titapiwatanakun B, Ennis M, Kaiserli E, Lee OR, Adamec J, Peer WA, Murphy AS (2011) Phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 9:e1001076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119

    Article  CAS  PubMed  Google Scholar 

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433

    Article  PubMed  Google Scholar 

  • Ding Z, Galván-Ampudia CS, Demarsy E, Langowski L, Kleine-Vehn J, Fan Y, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nature Cell Biol 13:447–452

    Article  CAS  PubMed  Google Scholar 

  • Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E (2006) A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci USA 103:236–241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujihira K, Kurata T, Watahiki MK, Karahara I, Yamamoto KT (2000) An agravitropic mutant of Arabidopsis, endodermal-amyloplast less 1, that lacks amyloplasts in hypocotyl endodermal cell layer. Plant Cell Physiol 41:1193–1199

    Article  CAS  PubMed  Google Scholar 

  • Fukaki H, Fujisawa H, Tasaka M (1996) SGR1, SGR2, and SGR3: novel genetic loci involved in shoot gravitropism in Arabidopsis thaliana. Plant Physiol 110:945–955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14:425–430

    Article  CAS  PubMed  Google Scholar 

  • Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168

    Article  CAS  PubMed  Google Scholar 

  • Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    Article  PubMed  Google Scholar 

  • Geisler M, Murphy A (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580:1094–1102

    Article  CAS  PubMed  Google Scholar 

  • Haga K, Sakai T (2012) PIN auxin efflux carriers are necessary for pulse-induced but not continuous light-induced phototropism in Arabidopsis. Plant Physiol 160:763–776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanada K, Higuchi-Takeuchi M, Okamoto M, Yoshizumi T, Shimizu M, Nakaminami K, Nishi R, Ohashi C, Iida K, Tanaka M, Horii Y, Kawashima M, Matsui K, Toyoda T, Shinozaki K, Seki M, Matsui M (2013) Small open reading frames associated with morphogenesis are hidden in plant genomes. Proc Natl Acad Sci USA 110:2395–2400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hatakeda Y, Kamada M, Goto N, Fukaki H, Tasaka M, Suge H, Takahashi H (2003) Gravitropic response plays an important role in the nutational movements of the shoots of Pharbitis nil and Arabidopsis thaliana. Physiol Plant 118:464–473

    Article  CAS  Google Scholar 

  • Iino M (1988) Pulse-induced phototropism in oat and maize coleoptiles. Plant Physiol 88:823–828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iino M (1995) Gravitropism and phototropism of maize coleoptiles: evaluation of the Cholodny-Went theory through effects of auxin application and decapitation. Plant Cell Physiol 36:361–367

    CAS  Google Scholar 

  • Iino M (2001) Phototropism in higher plants. In: Häder D, Lebert M (eds) Photomovement, ESP comprehensive series in Photosciences, vol 1. Elsevier, Amsterdam, pp 659–811

    Google Scholar 

  • Iyer-Pascuzzi AS, Jackson T, Cui H, Petricka JJ, Busch W, Tsukagoshi H, Benfey PN (2011) Cell identity regulators link development and stress responses in the Arabidopsis root. Dev Cell 21:770–782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones B, Gunnera S, Petersson SV, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K (2010) Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell 22:2956–2969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kagawa T, Kimura M, Wada M (2009) Blue light-induced phototropism of inflorescence stems and petioles is mediated by phototropin family members phot1 and phot2. Plant Cell Physiol 50:1774–1785

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Morita MT, Fukaki H, Yamauchi Y, Uehara M, Niihama M, Tasaka M (2002) SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14:33–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim K, Shin J, Lee S-H, Kweon H-S, Maloof JN, Choi G (2011) Phytochromes inhibit hypocotyl negative gravitropism by regulating the development of endodermal amyloplasts through phytochrome-interacting factors. Proc Natl Acad Sci USA 108:1729–1734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K (2001) phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656–660

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Kiss JZ (2006) Modulation of phototropism by phytochrome E and attenuation of gravitropism by phytochrome B and E in inflorescence stems. Physiol Plant 127:304–311

    Article  CAS  Google Scholar 

  • Kumar P, Millar KD, Kiss JZ (2011) Inflorescence stems of the mdr1 mutant display altered gravitropism and phototropism. Environ Exp Bot 70:244–250

    Article  CAS  Google Scholar 

  • Li N (2008) The dual- and opposing effect of ethylene on the negative gravitropism of Arabidopsis inflorescence stem and light-grown hypocotyls. Plant Sci 175:71–86

    Article  CAS  Google Scholar 

  • Morita MT (2010) Directional gravity sensing in gravitropism. Annu Rev Plant Biol 61:705–720

    Article  CAS  PubMed  Google Scholar 

  • Morita MT, Saito C, Nakano A, Tasaka M (2007) Endodermal-amyloplast less 1 is a novel allele of SHORT-ROOT. Adv Space Res 39:1127–1133

    Article  Google Scholar 

  • Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–6911

    Article  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muto H, Watahiki MK, Nakamoto D, Kinjo M, Yamamoto KT (2007) Specificity and similarity of functions of the Aux/IAA genes in auxin signaling of Arabidopsis revealed by promoter-exchange experiments between MSG2/IAA19, AXR2/IAA3 and SLR/IAA14. Plant Physiol 144:187–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagashima A, Suzuki G, Uehara Y, Saji K, Furukawa T, Koshiba T, Sekimoto M, Fujioka S, Kuroha T, Kojima M, Sakakibara H, Fujisawa N, Okada K, Sakai T (2008) Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner. Plant J 53:516–529

    Article  CAS  PubMed  Google Scholar 

  • Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123:563–573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa T, Nakamura S, Tanaka K, Kawamukai M, Suzuki T, Nakamura K, Kimura T, Ishiguro S (2008) Development of R4 Gateway binary vectors (R4pGWB) enabling high-throughput promoter swapping for plant research. Biosci Biotechnol Biochem 72:624–629

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser J, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475

    Article  CAS  PubMed  Google Scholar 

  • Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13:2441–2454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noh B, Bandyopadhyay A, Peer WA, Spalding EP, Murphy AS (2003) Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423:999–1002

    Article  CAS  PubMed  Google Scholar 

  • Ohgishi M, Saji K, Okada K, Sakai T (2004) Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci USA 101:2223–2228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park J-E, Park J-Y, Kim Y-S, Staswick PE, Jeon J, Yun J, Kim S-Y, Kim J, Lee Y-H, Park C-M (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    Article  CAS  PubMed  Google Scholar 

  • Rakusova H, Gallego-Bartolome J, Vanstraelen M, Robert HS, Alabadi D, Blazquez MA, Benkova E, Friml J (2011) Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J 67:817–826

    Article  CAS  PubMed  Google Scholar 

  • Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in AUX/IAA gene. Science 279:1371–1373

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhry S, Del Bianco M, Kieffer M, Kepinski S (2013) Auxin controls gravitropic setpoint angle in higher plant lateral branches. Cur Biol 23:1497–1504

    Article  CAS  Google Scholar 

  • Saito K, Watahiki MK, Yamamoto KT (2007) Differential expression of the auxin primary response gene MASSUGU2/IAA19 during tropic responses of Arabidopsis hypocotyls. Physiol Plant 130:148–156

    Article  CAS  Google Scholar 

  • Sakai T, Haga K (2012) Molecular genetic analysis of phototropism in Arabidopsis. Plant Cell Physiol 53:1517–1534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steinitz B, Poff KL (1986) A single positive phototropic response induced with pulsed light in hypocotyls of Arabidopsis thaliana seedlings. Planta 168:305–315

    Article  Google Scholar 

  • Sun J, Qi L, Li Y, Zhai Q, Li C (2013) PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis. Plant Cell 25:2102–2114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126:711–721

    CAS  PubMed  Google Scholar 

  • Tian Q, Uhlir NJ, Reed JW (2002) Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell 14:301–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Timpte CS, Wilson AK, Estelle M (1992) Effects of the axr2 mutation of Arabidopsis on cell shape in hypocotyl and inflorescence. Planta 188:271–278

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson AK, Pickett FB, Turner JC, Estelle M (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet 222:377–383

    Article  CAS  PubMed  Google Scholar 

  • Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN (2000) Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127:595–603

    CAS  PubMed  Google Scholar 

  • Yang RL, Tepper HB (1996) Effects of circumnutation and passive bending on the initial stages of gravitropism in pea stems. J Plant Physiol 147:703–708

    Article  CAS  Google Scholar 

  • Yano D, Sato M, Saito C, Sato MH, Morita MT, Tasaka M (2003) A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism. Proc Natl Acad Sci USA 100:8589–8594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshihara T, Spalding EP, Iino M (2013) AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J 74:267–279

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. K. Shimazaki (Kyushu University) for seeds of phot1 phot2 double mutants, Prof. T. Sakai (Niigata University) for pgp1-101 and pgp19-101, and Arabidopsis Biological Resource Center (Ohio State University) for seeds of the other T-DNA insertion and mutant lines. We also thank Dr. M. K. Watahiki (Hokkaido University) for ACTIN2 primers. This work was supported in part by Grants-in-Aid from Ministry of Education, Culture, Sports, Science and Technology, Japan to K. T. Y. (19060008). S. S. was supported by Research Fellowship for Young Scientists of Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kotaro T. Yamamoto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10265_2014_643_MOESM1_ESM.tif

Supplementary material 1 (TIFF 2925 kb). Fig. S1 Longitudinal sections of the primary stem of the wild type and axr2-1 stained for amyloplasts. The wild type (left) and axr2-1 (right) stem segments about 1 cm long were fixed with 3 % paraformaldehyde in phosphate-buffered saline overnight, and embedded in 3 % agarose. About 60-μm-thick longitudinal sections were prepared with a vibrating blade microtome (VT1200S, Leica), and stained with 5 % I2–KI solution for a few min. en, endodermis

10265_2014_643_MOESM2_ESM.tif

Supplementary material 2 (TIFF 1243 kb). Fig. S2 Effects of decapitation or application of NAA or NPA on the maximum bending rate of gravitropism in wild-type inflorescence stems in the dark or under light conditions. Plants were placed in a horizontal position ~5 h after decapitation (upper panel) or after application of lanolin paste containing 0.5 mM NAA or NPA to apical 1-cm-long portions of stem (lower panel), and the time course of the gravitropic response determined for 18 h thereafter in the dark or under light conditions. Each of the data represents mean and SD of three to 14 measurements

10265_2014_643_MOESM3_ESM.tif

Supplementary material 3 (TIFF 532 kb). Fig. S3 Time-course of the gravitropic response of eal1 and sgr2 (SALK_098981) inflorescence stems under different light conditions. eal1 (upper panel) or sgr2 (lower panel) were placed in the dark (closed symbols) and white-light conditions (open symbols) after changing the position of plants by ~90°. Two independent measurements are shown for each genotype (circles and triangles)

10265_2014_643_MOESM4_ESM.tif

Supplementary material 4 (TIFF 1639 kb). Fig. S4 Effects of application of NAA or decapitation on gravitropism of inflorescence stems of axr2-1 in white-light conditions. a Gravitropic response was determined with 0.5 mM NAA (triangles) or mock treatment (circles). b Gravitropic response was determined after decapitation and removal of all the lateral organs (triangles). Circles show response of intact inflorescences. Each point represents mean and SD of three to 14 measurements. For more details, see the legend to Fig. 3

10265_2014_643_MOESM5_ESM.tif

Supplementary material 5 (TIFF 2400 kb). Fig. S5 Effects of application of NPA on phototropism of inflorescence stems of the wild type and axr2-1. Lanolin paste containing 0.5 mM NPA was applied to wild-type (circles) or axr2-1 (triangles) stems. Data of mock treatment are shown with grey symbols, which are the same as those in Fig. 3a. Each point represents mean and SD of seven measurements. For more details, see a legend to Fig. 3

10265_2014_643_MOESM6_ESM.tif

Supplementary material 6 (TIFF 1268 kb). Fig. S6 Phototropic responses of inflorescence stems of pin1-1 induced by unilateral irradiation with blue light (57 μmol m−2 s−1). Each point represents mean and SD of four measurements

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, A., Sasaki, S., Matsuzaki, J. et al. Light-dependent gravitropism and negative phototropism of inflorescence stems in a dominant Aux/IAA mutant of Arabidopsis thaliana, axr2 . J Plant Res 127, 627–639 (2014). https://doi.org/10.1007/s10265-014-0643-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-014-0643-1

Keywords

Navigation